scholarly journals A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling

Author(s):  
Kamran Javed ◽  
Rafael Gouriveau ◽  
Noureddine Zerhouni ◽  
Patrick Nectoux
2016 ◽  
Vol 8 (12) ◽  
pp. 168781401668308 ◽  
Author(s):  
Shuangyuan Wang ◽  
Yixiang Huang ◽  
Liang Gong ◽  
Lin Li ◽  
Chengliang Liu

Vibration signals reflecting different kinds of machinery conditions are very useful for fault diagnosis. However, vibration signal characteristics are not the same for different types of equipment and patterns of failure. This available information is often lost in structureless condition diagnosis models. We propose a structured Fisher discrimination sparse coding–based fault diagnosis scheme to improve the feature extraction procedure considering both efficiency and effectiveness. There are three major components: (1) a structured dictionary for synthesizing the vibration signals that is learned by structure Fisher discrimination dictionary learning, (2) a tree-structured sparse coding to extract sparse representation coefficients from vibration signals to represent fault features, and (3) a support vector machine’s classifier on the features to recognize different faults. The proposed algorithm is verified on a standard bearing fault data set and a worm gear fault experiment. Test results have proved that the proposed method can achieve better performance with considerable efficiency and generalization ability.


2015 ◽  
Vol 5 (7) ◽  
Author(s):  
Nader Karamzadeh ◽  
Yasaman Ardeshirpour ◽  
Matthew Kellman ◽  
Fatima Chowdhry ◽  
Afrouz Anderson ◽  
...  

Author(s):  
Qian Cai ◽  
Xingliang Xiong ◽  
Weiqiang Gong ◽  
Haixian Wang

BACKGROUND: Classification of action intention understanding is extremely important for human computer interaction. Many studies on the action intention understanding classification mainly focus on binary classification, while the classification accuracy is often unsatisfactory, not to mention multi-classification. METHOD: To complete the multi-classification task of action intention understanding brain signals effectively, we propose a novel feature extraction procedure based on thresholding graph metrics. RESULTS: Both the alpha frequency band and full-band obtained considerable classification accuracies. Compared with other methods, the novel method has better classification accuracy. CONCLUSIONS: Brain activity of action intention understanding is closely related to the alpha band. The new feature extraction procedure is an effective method for the multi-classification of action intention understanding brain signals.


Author(s):  
Horacio Pinzón ◽  
Cinthia Audivet ◽  
Javier Alexander ◽  
Melitsa Torres ◽  
Marlon Consuegra ◽  
...  

Fault detection and diagnosis schemes based on data-driven statistical modelling are highly dependent on an accurate and exhaustive feature extraction procedure to deliver a superior performance as a monitoring strategy. Otherwise conducted, a deficient feature extraction procedure leads to a monitoring structure widely deviated from normal operating conditions. If an operating state is not identified as it, an increment in false alarm rate would be evidenced whenever the process shifts towards that condition and the monitoring scheme triggers the abnormal condition warning. On the other hand, if two similar operating conditions could not be individualized i.e. to be identified as a single operating state, a lack of sensitivity for minor — yet typical — deviations would render a monitoring strategy with prominent misdetection rates. Although Multimode Operational Mapping requires the proper identification of a finite set of normal process states, it is a challenging task especially for large-scale systems. Its complexity derives from a broad universe of monitoring variables, highly interactuating process units integrated over very dynamic network systems, among others. This is the case of natural gas transmission infrastructure, as it deals with variable upstream production rates, diverse consumption trends from customers, internal processes constrains, merged in a stringent operating scheme. This paper proposes a novel strategy to address the identification and feature extraction of normal conditions on multimode operation systems. The proposed framework uses a segmentation approach based on operator’s knowledge, the Takagi-Sugeno-Kang fuzzy engine and k-means algorithm to characterize the normal operation states of the system. The results show an improvement in the performance of Principal Component Analysis during abnormal conditions detection, in addition an increase on the sensitivity of Hotelling and Q statistics.


Sign in / Sign up

Export Citation Format

Share Document