A Novel Hybrid Strategy for Multimode Operation Mapping and Feature Extraction on Data-Driven Statistical Fault Detection Methods

Author(s):  
Horacio Pinzón ◽  
Cinthia Audivet ◽  
Javier Alexander ◽  
Melitsa Torres ◽  
Marlon Consuegra ◽  
...  

Fault detection and diagnosis schemes based on data-driven statistical modelling are highly dependent on an accurate and exhaustive feature extraction procedure to deliver a superior performance as a monitoring strategy. Otherwise conducted, a deficient feature extraction procedure leads to a monitoring structure widely deviated from normal operating conditions. If an operating state is not identified as it, an increment in false alarm rate would be evidenced whenever the process shifts towards that condition and the monitoring scheme triggers the abnormal condition warning. On the other hand, if two similar operating conditions could not be individualized i.e. to be identified as a single operating state, a lack of sensitivity for minor — yet typical — deviations would render a monitoring strategy with prominent misdetection rates. Although Multimode Operational Mapping requires the proper identification of a finite set of normal process states, it is a challenging task especially for large-scale systems. Its complexity derives from a broad universe of monitoring variables, highly interactuating process units integrated over very dynamic network systems, among others. This is the case of natural gas transmission infrastructure, as it deals with variable upstream production rates, diverse consumption trends from customers, internal processes constrains, merged in a stringent operating scheme. This paper proposes a novel strategy to address the identification and feature extraction of normal conditions on multimode operation systems. The proposed framework uses a segmentation approach based on operator’s knowledge, the Takagi-Sugeno-Kang fuzzy engine and k-means algorithm to characterize the normal operation states of the system. The results show an improvement in the performance of Principal Component Analysis during abnormal conditions detection, in addition an increase on the sensitivity of Hotelling and Q statistics.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 122
Author(s):  
Yang Li ◽  
Fangyuan Ma ◽  
Cheng Ji ◽  
Jingde Wang ◽  
Wei Sun

Feature extraction plays a key role in fault detection methods. Most existing methods focus on comprehensive and accurate feature extraction of normal operation data to achieve better detection performance. However, discriminative features based on historical fault data are usually ignored. Aiming at this point, a global-local marginal discriminant preserving projection (GLMDPP) method is proposed for feature extraction. Considering its comprehensive consideration of global and local features, global-local preserving projection (GLPP) is used to extract the inherent feature of the data. Then, multiple marginal fisher analysis (MMFA) is introduced to extract the discriminative feature, which can better separate normal data from fault data. On the basis of fisher framework, GLPP and MMFA are integrated to extract inherent and discriminative features of the data simultaneously. Furthermore, fault detection methods based on GLMDPP are constructed and applied to the Tennessee Eastman (TE) process. Compared with the PCA and GLPP method, the effectiveness of the proposed method in fault detection is validated with the result of TE process.


2019 ◽  
Vol 111 ◽  
pp. 05009 ◽  
Author(s):  
Tianyun Gao ◽  
Bartosz Boguslawski ◽  
Sylvain Marié ◽  
Patrick Béguery ◽  
Simon Thebault ◽  
...  

Data-driven automatic fault detection and diagnostics (AFDD) have gained a lot of research attention in recent years. Many existing solutions need to learn from the fault operation data to be able to diagnose the faults. However, these data are usually not available in buildings. In this study we present a data-driven AFDD solution for Air Handling Units (AHUs). The solution consists of three levels of fault detection that require different levels of data availability: the first level is daily energy benchmarking; the second level is control performance evaluation; and the third level is data-driven modelling of mechanical systems. The method is applied to two case studies: experimental data from ASHRAE project 1312-RP, and real-life operation data of an office building in France. These tests show that the solution is able to isolate control faults and mechanical faults of individual components, by learning from normal operation data only.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1588 ◽  
Author(s):  
Donghyun Kim ◽  
Sangbong Lee ◽  
Jihwan Lee

The fluctuation of the oil price and the growing requirement to reduce greenhouse gas emissions have forced ship builders and shipping companies to improve the energy efficiency of the vessels. The accurate prediction of the required propulsion power at various operating condition is essential to evaluate the energy-saving potential of a vessel. Currently, a new ship is expected to use the ISO15016 method in estimating added resistance induced by external environmental factors in power prediction. However, since ISO15016 usually assumes static water conditions, it may result in low accuracy when it is applied to various operating conditions. Moreover, it is time consuming to apply the ISO15016 method because it is computationally expensive and requires many input data. To overcome this limitation, we propose a data-driven approach to predict the propulsion power of a vessel. In this study, support vector regression (SVR) is used to learn from big data obtained from onboard measurement and the National Oceanic and Atmospheric Administration (NOAA) database. As a result, we show that our data-driven approach shows superior performance compared to the ISO15016 method if the big data of the solid line are secured.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yiqing Zhou ◽  
Jian Wang ◽  
Zeru Wang

Recently, researches on data-driven faulty identification have been achieving increasing attention due to the fast development of the modern conditional monitoring technology and the availability of the massive historical storage data. However, most industrial equipment is working under variable industrial operating conditions which can be a great challenge to the generalization ability of the normal data-driven model trained by the historical storage operating data whose distribution might be different from the current operating datasets. Moreover, the traditional data-driven faulty prognostic model trained on massive historical data can hardly meet the real-time requirement of the practical industry. Since the hierarchical feature extraction can enhance the model generalization ability and the attention learning mechanism can promote the prediction efficiency, this paper proposes a novel bearing faulty prognostic approach combining the U-net-based multiscale feature extraction network and the CBAM- (convolutional block attention module-) based attention learning network. First, time domain conditional monitoring signals are converted into the two-dimensional gray-scale image which can be applicable for the input of the CNN. Second, a CNN model based on the U-net structure is adopted as the feature extractor to hierarchically extract the multilevel features which can be very sensitive to the faulty information contained in the converted image. Finally, the extracted multilevel features containing different representations of the raw signals are sent to the designed CBAM-based attention learning network for high efficiency faulty classification with its unique emphasize discrimination characteristic. The effectiveness of the proposed approach is validated by two case studies offered by the CWRU (Case Western Reserved University) and the Paderborn University. The experimental result indicates that the proposed faulty prognostic approach outperforms other comparison models in terms of the generalization ability and the speed-up properties.


Author(s):  
Igor Loboda ◽  
Juan Luis Pérez-Ruiz ◽  
Sergiy Yepifanov

In an effort to better compare particular gas turbine diagnostic solutions and recommend the best solution, the software tool called Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) has been developed. This benchmarking platform includes a simulator of the aircraft engine fleet with healthy and faulty engines. The platform presents a public approach, at which different investigators can verify and compare their algorithms for the diagnostic stages of feature extraction, fault detection, and fault identification. Using ProDiMES, some different diagnostic solutions have been compared so far. This study presents a new attempt to enhance a gas turbine diagnostic process. A data-driven algorithm that embraces the mentioned three diagnostic stages is verified on the basis of ProDiMES. At the feature extraction stage, this algorithm uses a polynomial model of an engine baseline to compute deviations of actual gas path measurements from the corresponding values of a healthy engine. At the fault detection and fault identification stages, a common classification for fault detection and fault identification is firstly constructed using deviation vectors (patterns). One of the three chosen pattern recognition techniques then performs both fault detection and fault identification as a common process. Numerous numerical experiments have been conducted to select the best configurations of the baseline model, a pertinent structure of the fault classification, and the best recognition technique. The experiments were accompanied by a computational precision analysis for each component of the proposed algorithm. The comparison of the final diagnostic ProDiMES metrics obtained under the selected optimal conditions with the metrics of other diagnostic solutions shows that the proposed algorithm is a promising tool for gas turbine monitoring systems.


2019 ◽  
Vol 16 (4) ◽  
pp. 317-324
Author(s):  
Liang Kong ◽  
Lichao Zhang ◽  
Xiaodong Han ◽  
Jinfeng Lv

Protein structural class prediction is beneficial to protein structure and function analysis. Exploring good feature representation is a key step for this prediction task. Prior works have demonstrated the effectiveness of the secondary structure based feature extraction methods especially for lowsimilarity protein sequences. However, the prediction accuracies still remain limited. To explore the potential of secondary structure information, a novel feature extraction method based on a generalized chaos game representation of predicted secondary structure is proposed. Each protein sequence is converted into a 20-dimensional distance-related statistical feature vector to characterize the distribution of secondary structure elements and segments. The feature vectors are then fed into a support vector machine classifier to predict the protein structural class. Our experiments on three widely used lowsimilarity benchmark datasets (25PDB, 1189 and 640) show that the proposed method achieves superior performance to the state-of-the-art methods. It is anticipated that our method could be extended to other graphical representations of protein sequence and be helpful in future protein research.


Author(s):  
Iyappan Murugesan ◽  
Karpagam Sathish

: This paper presents electrical power system comprises many complex and interrelating elements that are susceptible to the disturbance or electrical fault. The faults in electrical power system transmission line (TL) are detected and classified. But, the existing techniques like artificial neural network (ANN) failed to improve the Fault Detection (FD) performance during transmission and distribution. In order to reduce the power loss rate (PLR), Daubechies Wavelet Transform based Gradient Ascent Deep Neural Learning (DWT-GADNL) Technique is introduced for FDin electrical power sub-station. DWT-GADNL Technique comprises three step, normalization, feature extraction and FD through optimization. Initially sample power TL signal is taken. After that in first step, min-max normalization process is carried out to estimate the various rated values of transmission lines. Then in second step, Daubechies Wavelet Transform (DWT) is employed for decomposition of normalized TLsignal to different components for feature extraction with higher accuracy. Finally in third step, Gradient Ascent Deep Neural Learning is an optimization process for detecting the local maximum (i.e., fault) from the extracted values with help of error function and weight value. When maximum error with low weight value is identified, the fault is detected with lesser time consumption. DWT-GADNL Technique is measured with PLR, feature extraction accuracy (FEA), and fault detection time (FDT). The simulation result shows that DWT-GADNL Technique is able to improve the performance of FEA and reduces FDT and PLR during the transmission and distribution when compared to state-of-the-art works.


Sign in / Sign up

Export Citation Format

Share Document