scholarly journals Recognizing volumetric objects in the presence of uncertainty

Author(s):  
T. Arbel ◽  
P. Whaite ◽  
F.P. Ferrie
Keyword(s):  
2020 ◽  
Vol 12 (4) ◽  
pp. 429-436
Author(s):  
Valery A. Golunov ◽  
◽  
Vadim A. Korotkov ◽  

A method for calculating holograms for volumetric objects based on the representation of objects in the form of ensembles of virtual point sources distributed on a set of parallel planes has been proposed. The proposed method is the development of the well-known method in which objects are represented as ensemble of real point scatterers. The possibilities of the proposed method are demonstrated by calculating a hologram of a fragment of a sphere, on which 1000 points are randomly selected, at which radiation emanating from the center of the sphere is scattered. The choice of a fragment of a sphere as an object under study is due to the fact that when calculating its hologram, phase errors inherent in approximate calculations are most pronounced. The calculations were performed for the frequency range of 2...100 GHz, the sphere radius of 0.5 m, a two-dimensional hologram size of 0.65×0.65 m, and a pixel count of 512×512. It is shown that, in comparison with the known method, the proposed method makes it possible to calculate the amplitude of a hologram with satisfactory accuracy if virtual sources are placed on parallel planes in an amount of more than 64 pieces. In the case of objects that require representation in the form of an ensemble of point scatterers in the amount of more than 1000 pieces, the calculation of their holograms by the proposed method turns out to be much more efficient than the known method.


2019 ◽  
Vol 9 (19) ◽  
pp. 4019 ◽  
Author(s):  
Sung ◽  
Ma ◽  
Choi ◽  
Hong

Physics education applications using augmented reality technology, which has been developed extensively in recent years, have a lot of restrictions in terms of performance and accuracy. The purpose of our research is to develop a real-time simulation system for physics education that is based on parallel processing. In this paper, we present a video see-through AR (Augmented Reality) system that includes an environment recognizer using a depth image of Microsoft’s Kinect V2 and a real-time soft body simulator based on parallel processing using GPU (Graphic Processing Unit). Soft body simulation can provide more realistic simulation results than rigid body simulation, so it can be more effective in systems for physics education. We have designed and implemented a system that provides the physical deformation and movement of 3D volumetric objects, and uses them in education. To verify the usefulness of the proposed system, we conducted a questionnaire survey of 10 students majoring in physics education. As a result of the questionnaire survey, 93% of respondents answered that they would like to use it for education. We plan to use the stand-alone AR device including one or more cameras to improve the system in the future.


2020 ◽  
Author(s):  
Mohamed El Beheiry ◽  
Charlotte Godard ◽  
Clément Caporal ◽  
Valentin Marcon ◽  
Cécilia Ostertag ◽  
...  

AbstractAs three-dimensional microscopy becomes commonplace in biological re-search, there is an increasing need for researchers to be able to view experimental image stacks in a natural three-dimensional viewing context. Through stereoscopy and motion tracking, commercial virtual reality headsets provide a solution to this important visualization challenge by allowing researchers to view volumetric objects in an entirely intuitive fashion. With this motivation, we present DIVA, a user-friendly software tool that automatically creates detailed three-dimensional reconstructions of raw experimental image stacks that are integrated in virtual reality. In DIVA’s immersive virtual environment, users can view, manipulate and perform volumetric measurements on their microscopy images as they would to real physical objects. In contrast to similar solutions, our software provides high-quality volume rendering with native TIFF file compatibility. We benchmark the software with diverse image types including those generated by confocal, light-sheet and electron microscopy. DIVA is available at https://diva.pasteur.fr and will be regularly updated.


2008 ◽  
Vol 35 (1) ◽  
pp. 71
Author(s):  
ANDREA LOPES IESCHECK ◽  
CLAUDIA ROBBI SLUTER ◽  
RENATO ANTÔNIO DEDECEK

This paper is on volume visualization of spatial data. It aims at showing new possibilities to visualize three-dimensional phenomena such as geology, soils, geophysics, seismic and the like. The use of volumes in the evaluation processes allows one to visualize and to explore the phenomenon as a continuous body in space, thus incorporating the third dimension in cartography. The volumetric visualization is a branch of scientific visualization that has shown a fast growth and its goal is to comprehend the internal structure and the behavior of three-dimensional volumetric objects. Volumetric visualization depends on the interaction. We must, therefore, interact with the volume trough rotations, cuts and other forms of graphic manipulation, seeking the complete information. The methodology of this research entails the acquisition of three-dimensional data, three-dimensional interpolation, as well as volume formation and visualization by means of three-dimensional Geographic Information System and volumetric visualization software. Soil’s data were interpolated in order to be continuously represented in three-dimensional space. The outcome of volume representations of physical and chemical properties is a new way to visualize the soil and a new source of knowledge to the study of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document