scholarly journals Visualização Volumétrica Aplicada às Geociências

2008 ◽  
Vol 35 (1) ◽  
pp. 71
Author(s):  
ANDREA LOPES IESCHECK ◽  
CLAUDIA ROBBI SLUTER ◽  
RENATO ANTÔNIO DEDECEK

This paper is on volume visualization of spatial data. It aims at showing new possibilities to visualize three-dimensional phenomena such as geology, soils, geophysics, seismic and the like. The use of volumes in the evaluation processes allows one to visualize and to explore the phenomenon as a continuous body in space, thus incorporating the third dimension in cartography. The volumetric visualization is a branch of scientific visualization that has shown a fast growth and its goal is to comprehend the internal structure and the behavior of three-dimensional volumetric objects. Volumetric visualization depends on the interaction. We must, therefore, interact with the volume trough rotations, cuts and other forms of graphic manipulation, seeking the complete information. The methodology of this research entails the acquisition of three-dimensional data, three-dimensional interpolation, as well as volume formation and visualization by means of three-dimensional Geographic Information System and volumetric visualization software. Soil’s data were interpolated in order to be continuously represented in three-dimensional space. The outcome of volume representations of physical and chemical properties is a new way to visualize the soil and a new source of knowledge to the study of this phenomenon.

2021 ◽  
Vol 11 (15) ◽  
pp. 7016
Author(s):  
Pawel S. Dabrowski ◽  
Cezary Specht ◽  
Mariusz Specht ◽  
Artur Makar

The theory of cartographic projections is a tool which can present the convex surface of the Earth on the plane. Of the many types of maps, thematic maps perform an important function due to the wide possibilities of adapting their content to current needs. The limitation of classic maps is their two-dimensional nature. In the era of rapidly growing methods of mass acquisition of spatial data, the use of flat images is often not enough to reveal the level of complexity of certain objects. In this case, it is necessary to use visualization in three-dimensional space. The motivation to conduct the study was the use of cartographic projections methods, spatial transformations, and the possibilities offered by thematic maps to create thematic three-dimensional map imaging (T3DMI). The authors presented a practical verification of the adopted methodology to create a T3DMI visualization of the marina of the National Sailing Centre of the Gdańsk University of Physical Education and Sport (Poland). The profiled characteristics of the object were used to emphasize the key elements of its function. The results confirmed the increase in the interpretative capabilities of the T3DMI method, relative to classic two-dimensional maps. Additionally, the study suggested future research directions of the presented solution.


2012 ◽  
Vol 204-208 ◽  
pp. 4872-4877
Author(s):  
Da Xi Ma ◽  
Xiao Hong Liu ◽  
Li Wei Ma

By analyzing the attributes of three-dimensional space data model, the integrated 3D spatial data adopts object-oriented method for digital landslide modeling. It achieves spatial data modeling for landslide geological entity. An experimental case is given to indicate the feasibility of this approach for spatial data modeling.


2017 ◽  
pp. 1133-1164
Author(s):  
Snežana S. Ilić-Stojanović ◽  
Ljubiša B. Nikolić ◽  
Vesna D. Nikolić ◽  
Slobodan D. Petrović

The latest development in the field of smart hydrogels application as drugs carriers is shown in this chapter. Hydrogels are three-dimensional polymer network consisting of at least one hydrophilic monomer. They are insoluble in water, but in the excess presence of water or physiological fluids, swell to the equilibrium state. The amount of absorbed water depends on the chemical composition and the crosslinking degree of 3D hydrogel network and reaches over 1000% of the xerogel weight. Stimuli-responsive hydrogels exhibit significant change of their properties (swelling, color, transparency, conductivity, shape) due to small changes in the external environment conditions (pH, ionic strength, temperature, light wavelength, magnetic or electric fields, ultrasound, or a combination thereof). This smart hydrogels, with different physical and chemical properties, chemical structure and technology of obtaining, show great potential for application in the pharmaceutical industry. The application of smart hydrogels is very promising and at the beginning of the development and exploitation.


2011 ◽  
Vol 7 (S283) ◽  
pp. 448-449
Author(s):  
Hektor Monteiro ◽  
Denise Gonçalves ◽  
Marcelo Leal-Ferreira ◽  
Romano Corradi ◽  
Sebastian Sánchez

AbstractWe present optical integral field spectroscopy analysis of the main components, with the exception of the halo, as well as of the detected small-scale structures of the planetary nebulae NGC 3242. The observations were obtained with the VIMOS instrument attached to VLT-UT3. Spatially resolved maps of the electronic density (Ne), temperatures (Te) and chemical abundances, i.e., in a pixel to pixel fashion of the small and large-scales structures of this planetary nebula are determined in this work. These diagnostic and abundance maps represent important constraints for future detailed three dimensional photoionization modeling of the nebula, as well as providing important information on biases introduced by traditional slit observations.


Author(s):  
Scott Neurauter ◽  
Sabrina Szeto ◽  
Matt Tindall ◽  
Yan Wong ◽  
Chris Wright

3D visualization is the process of displaying spatial data to simulate and model a real three dimensional space. Using 3D visualization, Geomatic professionals are enabling pipeline engineers to make better decisions by providing an increased understanding of potential costs earlier in the design process. This paper will focus on the value of visualizing Digital Elevation Model (DEM) data through the use of hillshades and imagery-draped 3D models. From free online DEM data to high resolution Light Detection and Ranging (LiDAR) derived DEM data, the increased availability allows for a broader use of 3D visualization techniques beyond 3D analysis. Of the numerous sources available, two DEM sources will be discussed in this paper, the free low resolution DEM (CDED Level 1) and the more costly but higher resolution LiDAR based DEM. Traditional methods of evaluating potential locations for route and facilities involved a significant cost for ground truthing. Through the use of 3D visualization products, multiple potential locations can be examined for suitability without the expense of field visits for every candidate site. By focusing on the selected candidate locations using a visual desktop study, the time and expense of ground truthing all of the potential sites can be reduced significantly. Exploiting the visual value of DEM permits a productive and cost efficient methodology for initial route and facility placement on hydrocarbon projects.


2020 ◽  
Vol 21 (20) ◽  
pp. 7577
Author(s):  
Noriyuki Uchida ◽  
Takahiro Muraoka

Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.


Author(s):  
Kristina Ivana Fabijanic ◽  
Aída Ninfa Salinas López ◽  
Long Pan ◽  
Chi-Yuan Cheng ◽  
Yu Wang ◽  
...  

AbstractThere is an increasing need for materials with tunable physical and chemical properties that are relatively non-toxic and efficacious for their intended application. Many wood stains and finishes emit toxic chemicals which may have serious implications to one’s health. A novel alternative material is realized between xanthan gum and Neodol, a non-ionic surfactant. The resulting three-dimensional film is evaluated as a free-radical scavenger for the protection of wood at different ratios. Atomic force microscopy visualizes the topography and quantifies the local nanomechanics, while rheological measurements showcase a shift from viscoelastic material to gel. Electron plasmon resonance confirms the free-radical reducing ability (3.5 times), while liquid chromatography mass spectroscopy quantifies the UV degradation of sinapyl alcohol. This material has potential, not only in coating industries as a safer option, but also in those industries requiring flexibility and tenability, namely for biosensors and anti-inflammatory therapeutics. Graphic abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pooja Mittal ◽  
Anjali Saharan ◽  
Ravinder Verma ◽  
Farag M. A. Altalbawy ◽  
Mohammed A. Alfaidi ◽  
...  

Dendrimers are nanosized, symmetrical molecules in which a small atom or group of atoms is surrounded by the symmetric branches known as dendrons. The structure of dendrimers possesses the greatest impact on their physical and chemical properties. They grow outwards from the core-shell which further reacts with monomers having one reactive or two dormant molecules. Dendrimers’ unique characteristics such as hyperbranching, well-defined spherical structure, and high compatibility with the biological systems are responsible for their wide range of applications including medical and biomedical areas. Particularly, the dendrimers’ three-dimensional structure can incorporate a wide variety of drugs to form biologically active drug conjugates. In this review, we focus on the synthesis, mechanism of drug encapsulations in dendrimers, and their wide applications in drug delivery.


2020 ◽  
Vol 6 (19) ◽  
pp. eaba5337 ◽  
Author(s):  
A. Al Harraq ◽  
J. G. Lee ◽  
B. Bharti

Suprastructures at the colloidal scale must be assembled with precise control over local interactions to accurately mimic biological complexes. The toughest design requirements include breaking the symmetry of assembly in a simple and reversible fashion to unlock functions and properties so far limited to living matter. We demonstrate a simple experimental technique to program magnetic field–induced interactions between metallodielectric patchy particles and isotropic, nonmagnetic “satellite” particles. By controlling the connectivity, composition, and distribution of building blocks, we show the assembly of three-dimensional, multicomponent supraparticles that can dynamically reconfigure in response to change in external field strength. The local arrangement of building blocks and their reconfigurability are governed by a balance of attraction and repulsion between oppositely polarized domains, which we illustrate theoretically and tune experimentally. Tunable, bulk assembly of colloidal matter with predefined symmetry provides a platform to design functional microstructured materials with preprogrammable physical and chemical properties.


2020 ◽  
Vol 12 (6) ◽  
pp. 1040 ◽  
Author(s):  
Aleksandra Sekrecka ◽  
Damian Wierzbicki ◽  
Michal Kedzierski

Images acquired at a low altitude can be the source of accurate information about various environmental phenomena. Often, however, this information is distorted by various factors, so a correction of the images needs to be performed to recreate the actual reflective properties of the imaged area. Due to the low flight altitude, the correction of images from UAVs (unmanned aerial vehicles) is usually limited to noise reduction and detector errors. The article shows the influence of the Sun position and platform deviation angles on the quality of images obtained by UAVs. Tilting the camera placed on an unmanned platform leads to incorrect exposures of imagery, and the order of this distortion depends on the position of the Sun during imaging. An image can be considered in three-dimensional space, where the x and y coordinates determine the position of the pixel and the third dimension determines its exposure. This assumption is the basis for the proposed method of image exposure compensation. A three-dimensional transformation by rotation is used to determine the adjustment matrix to correct the image quality. The adjustments depend on the angles of the platform and the difference between the direction of flight and the position of the Sun. An additional factor regulates the value of the adjustment depending on the ratio of the pitch and roll angles. The experiments were carried out for two sets of data obtained with different unmanned systems. The correction method used can improve the block exposure by up to 60%. The method gives the best results for simple systems, not equipped with lighting compensation systems.


Sign in / Sign up

Export Citation Format

Share Document