Study on Energy Storage Technology of Sodium Sulfur Battery and it's Application in Power System

Author(s):  
Zhaoyin Wen
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1535
Author(s):  
Yanjie Wang ◽  
Yingjie Zhang ◽  
Hongyu Cheng ◽  
Zhicong Ni ◽  
Ying Wang ◽  
...  

Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement. Sodium has the properties of rich in content, low cost and ability to provide high voltage, which makes it an ideal substitute for lithium. Sulfur-based materials have attributes of high energy density, high theoretical specific capacity and are easily oxidized. They may be used as cathodes matched with sodium anodes to form a sodium-sulfur battery. Traditional sodium-sulfur batteries are used at a temperature of about 300 °C. In order to solve problems associated with flammability, explosiveness and energy loss caused by high-temperature use conditions, most research is now focused on the development of room temperature sodium-sulfur batteries. Regardless of safety performance or energy storage performance, room temperature sodium-sulfur batteries have great potential as next-generation secondary batteries. This article summarizes the working principle and existing problems for room temperature sodium-sulfur battery, and summarizes the methods necessary to solve key scientific problems to improve the comprehensive energy storage performance of sodium-sulfur battery from four aspects: cathode, anode, electrolyte and separator.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032067
Author(s):  
Qiang Fu ◽  
Chengxi Fu ◽  
Peng Fu ◽  
Yuke Deng

Abstract Energy storage is one of the main problems bothering the power system. The present research situation of energy storage is outlined. The working principles, development process and technical features of pumped storage, compressed air energy storage, flywheel energy storage, electromagnetic energy storage and chemical energy storage are described in detail. The application prospect of energy storage is proposed.


2014 ◽  
Vol 1070-1072 ◽  
pp. 418-421 ◽  
Author(s):  
Jun Chen ◽  
Chun Lin Guo

With the reserves of coal and other fossil energy decreasing, renewable energy sources (RES) will become the main power source of future power system. In order to ensure stable supply of RES generation and to improve efficiency of system, energy storage technology will play a more and more important role in power system. In this paper, we discussed the importance and characteristics of various energy storage technologies with battery and super capacitor energy storage technology as examples. Then we elaborated the principles and important effects of energy storage technologies in RES generation. Finally, using PSCAD to build the simulation model of grid connected RES generation and storage technology to obtain the effect of energy storage technologies. Results show that the energy storage devices can effectively alleviate the fluctuation of RES.


2021 ◽  
Author(s):  

The Kingdom of Saudi Arabia, among other countries, has ambitious plans to install a significant amount of renewable capacity by 2040. A high share of renewable generation in the power system can, however, result in grid instabilities. Energy storage technology is one option that could address these challenges, being an enabler of increased renewable generation in the power sector.


2008 ◽  
Vol 179 (27-32) ◽  
pp. 1697-1701 ◽  
Author(s):  
Zhaoyin Wen ◽  
Jiadi Cao ◽  
Zhonghua Gu ◽  
Xiaohe Xu ◽  
Fuli Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document