scholarly journals Efficient kinematic planning for mobile manipulators with non-holonomic constraints using optimal control

Author(s):  
Markus Giftthaler ◽  
Farbod Farshidian ◽  
Timothy Sandy ◽  
Lukas Stadelmann ◽  
Jonas Buchli
Robotica ◽  
2009 ◽  
Vol 27 (1) ◽  
pp. 147-159 ◽  
Author(s):  
M. H. Korayem ◽  
A. Nikoobin ◽  
V. Azimirad

SUMMARYIn this paper, finding the maximum load carrying capacity of mobile manipulators for a given two-end-point task is formulated as an optimal control problem. The solution methods of this problem are broadly classified as indirect and direct. This work is based on the indirect solution which solves the optimization problem explicitly. In fixed-base manipulators, the maximum allowable load is limited mainly by their joint actuator capacity constraints. But when the manipulators are mounted on the mobile bases, the redundancy resolution and nonholonomic constraints are added to the problem. The concept of holonomic and nonholonomic constraints is described, and the extended Jacobian matrix and additional kinematic constraints are used to solve the extra DOFs of the system. Using the Pontryagin's minimum principle, optimality conditions for carrying the maximum payload in point-to-point motion are obtained which leads to the bang-bang control. There are some difficulties in satisfying the obtained optimality conditions, so an approach is presented to improve the formulation which leads to the two-point boundary value problem (TPBVP) solvable with available commands in different softwares. Then, an algorithm is developed to find the maximum payload and corresponding optimal path on the basis of the solution of TPBVP. One advantage of the proposed method is obtaining the maximum payload trajectory for every considered objective function. It means that other objectives can be achieved in addition to maximize the payload. For the sake of comparison with previous results in the literature, simulation tests are performed for a two-link wheeled mobile manipulator. The reasonable agreement is observed between the results, and the superiority of the method is illustrated. Then, simulations are performed for a PUMA arm mounted on a linear tracked base and the results are discussed. Finally, the effect of final time on the maximum payload is investigated, and it is shown that the approach presented is also able to solve the time-optimal control problem successfully.


Robotica ◽  
2008 ◽  
Vol 26 (3) ◽  
pp. 385-394 ◽  
Author(s):  
José P. Puga ◽  
Luciano E. Chiang

SUMMARYThis work presents a method to generate optimal trajectories for redundant mobile manipulators based on a weighted function that considers simultaneously joint torques, manipulability and preferred joint angle references. This method is applicable to a group of tasks, commonly known as push–pull tasks, in which a redundant mobile manipulator subject to non-holonomic constraints moves slowly while exerting a set of forces against the environment. In practice, this occurs when the manipulator is pulling against an object such as when opening a door or unearthing a buried object. Torque is computed in a quasi-static manner, mainly taking into consideration the effect of multiple external forces while neglecting dynamic effects. The formulation incorporates a criterion for optimizing a starting configuration, and special considerations are made to account for non-holonomic constraints. The application to an existing mobile manipulator is described.


Author(s):  
Chin Pei Tang ◽  
Venkat Krovi

Interest in cooperative systems typically arises when certain tasks are either too complex to be performed by a single agent or when there are distinct benefits that accrue by cooperation of many simple agents. A quantitative examination of performance enhancement, due to the implementation of cooperation, is critical. In this paper, we focus on the development of a quantitative performance-analysis framework for a cooperative system with multiple wheeled mobile manipulators physically transporting a common payload. Each mobile manipulator module consists of a differentially-driven wheeled mobile robot with a mounted planar three-degree-of-freedom (d.o.f.) manipulator. A composite cooperative system is formed when a payload is placed at the end-effectors of multiple such modules. Such a system possesses the ability to change its relative configuration as well as accommodate relative positioning errors of the mobile bases. However, the combination of nonholonomic constraints due to the mobile bases, holonomic constraints due to the closed kinematic loops formed and the varying actuation of the joints within the cooperative system requires careful treatment for realizing the payload transport task. In this paper, we will analyze the cooperative composite system within a constrained mechanical system framework, by extending methods developed for treatment of articulated-closed-chain systems. Specifically, we will focus on the velocity-level kinematic modeling, while taking into account the nonholonomic/holonomic constraints and different joint-actuation schemes within the system. We then examine the applicability of a manipulability measure (isotropy index), to quantitatively analyze the system-level performance of the cooperative system, with these different joint-actuation schemes, with representative case-studies.


Sign in / Sign up

Export Citation Format

Share Document