Velocity characterization and control strategies for nano-robotic systems based on piezoelectric stick-slip actuators

Author(s):  
Shuai Liang ◽  
Mokrane Boudaoud ◽  
Barthelemy Cagneau ◽  
Stephane Regnier
Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Nidal Farhat ◽  
Vicente Mata ◽  
Álvaro Page ◽  
Miguel Díaz-Rodríguez

SUMMARYDynamic simulation in robotic systems can be considered as a useful tool not only for the design of both mechanical and control systems, but also for planning the tasks of robotic systems. Usually, the dynamic model suffers from discontinuities in some parts of it, such as the use of Coulomb friction model and the contact problem. These discontinuities could lead to stiff differential equations in the simulation process. In this paper, we present an algorithm that solves the discontinuity problem of the Coulomb friction model without applying any normalization. It consists of the application of an external switch that divides the integration interval into subintervals, the calculation of the friction force in the stick phase, and further improvements that enhance its stability. This algorithm can be implemented directly in the available commercial integration routines with event-detecting capability. Results are shown by a simulation process of a simple 1-DoF oscillator and a 3-DoF parallel robot prototype considering Coulomb friction in its joints. Both simulations show that the stiffness problem has been solved. This algorithm is presented in the form of a flowchart that can be extended to solve other types of discontinuity.


2004 ◽  
Vol 127 (4) ◽  
pp. 537-549 ◽  
Author(s):  
Jason M. Stevens ◽  
Gregory D. Buckner

During the past 20years, tremendous advancements have been made in the fields of minimally invasive surgery (MIS) and minimally invasive, robotically assisted (MIRA) cardiac surgery. Benefits from MIS include reduced pain and trauma, reduced risks of post-operative complications, shorter recovery times, and more aesthetically pleasing results. MIRA approaches have extended the capabilities of MIS by introducing three-dimensional vision, eliminating hand tremors, and enabling the precise articulation of smaller instruments. These advancements come with their own drawbacks, however. Robotic systems used in MIRA cardiac procedures are large, costly, and do not offer the miniaturized articulation necessary to facilitate tremendous advancements in MIS. This paper demonstrates that miniature actuation can overcome some of the limitations of current robotic systems by providing accurate, repeatable control of a small end effector. A 10× model of a two link surgical manipulator is developed, using antagonistic shape memory alloy wires as actuators, to simulate motions of a surgical end-effector. Artificial neural networks are used in conjunction with real-time visual feedback to “learn” the inverse system dynamics and control the manipulator endpoint trajectory. Experimental results are presented for indirect, on-line learning and control. Manipulator tip trajectories are shown to be accurate and repeatable to within 0.5mm. These results confirm that SMAs can be effective actuators for miniature surgical robotic systems, and that intelligent control can be used to accurately control the trajectory of these systems.


Robotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 74 ◽  
Author(s):  
Félix Nadon ◽  
Angel Valencia ◽  
Pierre Payeur

This paper aims to provide a comprehensive survey of recent advancements in modelling and autonomous manipulation of non-rigid objects. It first summarizes the recent advances in sensing and modelling of such objects with a focus on describing the methods and technologies used to measure their shape and estimate their material and physical properties. Formal representations considered to predict the deformation resulting from manipulation of non-rigid objects are then investigated. The third part provides a survey of planning and control strategies exploited to operate dexterous robotic systems while performing various tasks on objects made of different non-rigid materials.


2020 ◽  
Author(s):  
Daniel Poremski ◽  
Sandra Henrietta Subner ◽  
Grace Lam Fong Kin ◽  
Raveen Dev Ram Dev ◽  
Mok Yee Ming ◽  
...  

The Institute of Mental Health in Singapore continues to attempt to prevent the introduction of COVID-19, despite community transmission. Essential services are maintained and quarantine measures are currently unnecessary. To help similar organizations, strategies are listed along three themes: sustaining essential services, preventing infection, and managing human and consumable resources.


1989 ◽  
Vol 24 (3) ◽  
pp. 463-477
Author(s):  
Stephen G. Nutt

Abstract Based on discussions in workshop sessions, several recurring themes became evident with respect to the optimization and control of petroleum refinery wastewater treatment systems to achieve effective removal of toxic contaminants. It was apparent that statistical process control (SPC) techniques are finding more widespread use and have been found to be effective. However, the implementation of real-time process control strategies in petroleum refinery wastewater treatment systems is in its infancy. Considerable effort will need to be expended to demonstrate the practicality of on-line sensors, and the utility of automated process control in petroleum refinery wastewater treatment systems. This paper provides a summary of the discussions held at the workshop.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


Water Policy ◽  
2014 ◽  
Vol 17 (3) ◽  
pp. 423-440 ◽  
Author(s):  
Lei Wu ◽  
Tong Qi ◽  
Dan Li ◽  
Huijuan Yang ◽  
Guoqing Liu ◽  
...  

The surface water of 10 major river systems across China has been under intermediate pollution with striking eutrophication problems in major lakes (reservoirs). More data from the Ministry of Environmental Protection of China showed that underground water in 57% of monitoring sites across Chinese cities was polluted or extremely polluted. Rural water pollution, the rising number of incidents of industrial pollution, outdated sewerage systems, and the overuse of pesticides and chemical fertilizers also endanger the health of rural inhabitants in China. Nearly 0.2 billion rural residents could not use drinking water in accordance with the national standard, and there were reports of ‘cancer villages' and food-borne diseases (cancer village refers to a village where a certain proportion of its inhabitants suffer from the same kind of cancer or where there is a hike in cancer incidence in that area). This study aims to raise awareness of the prevention and control of water pollution and to propose a set of national research and policy initiatives for the future safety of the water environment in China.


Sign in / Sign up

Export Citation Format

Share Document