Photovoltaic cell electrical heating system for removing snow on panel including verification

Author(s):  
Agnes Weiss ◽  
Helmut Weiss
Author(s):  
Jens Kristian Lervik ◽  
Harald Kulbotten ◽  
Gunnar Klevjer ◽  
Øyvind Iversen

Traditional chemical treatment methods have considerable operation costs and represent a risk to the environment. Since 1987 Norwegian oil companies have been investigating alternative electrical heating methods for prevention of hydrate and wax plugs. A joint industry project ‘Concept Verification – Direct Heating of Oil & Gas Pipelines’ was initiated in 1996 and terminated in October 1999. During this work an electrical heating system was proved to be feasible on several fields in the North Sea. It will be installed on 7 flowlines of 13% Chromium (Crl3) with lengths between 6 km and 16 km. Electrical heating is used to maintain or raise the thermally insulated steel pipe temperature above the critical value for hydrate formation (typically 15–25 °C) or wax formation (typically 20–40°C). A single-phase power supply for the heating system is based on commercial components and connected to the platform power supply. The qualification work for the direct heating system has included full scale testing for single and parallel pipes, end termination at the template, bypass of a template and aspects concerning corrosion control. The rating of the system is dependent on the magnetic and electrical characteristics of the steel material. Such data is not commonly available. Measurements performed during the qualification program confirm that the magnetic characteristic may vary within a wide range for a specific steel quality and that mechanical stress and heat treatment can effect the magnetic characteristic. The difference in magnetic characteristic of individual Crl3 pipes results in variation of the pipe temperature and problems concerning differential pressure during melting. The problem can be handled by dividing the pipeline into a number of sections, each with a limited variation of the magnetic characteristic, thus keeping the temperature for the whole pipeline within acceptable limits. As a part of the pipe specification both electrical and magnetic characteristic should be available. These data can be determined by measuring arrangements in the production line of the mill. Measures to limit the variation of magnetic characteristic should be discussed.


2010 ◽  
Vol 663-665 ◽  
pp. 637-640
Author(s):  
Ci Jun Shuai ◽  
Cheng De Gao ◽  
Yi Nie ◽  
Shu Ping Peng

A novel fused biconical taper system is developed based on electrical heating system. Its movement platforms are designed. The main drawing movement platform, heater movement platform and packaging movement platform are focused on analysis. Motion control program is developed based on Delphi 2006 according to its technological requirements. The experimental results show that the movement of the novel fused biconical taper system is very stable, and the optical fiber couplers fabricated with the novel system have the good optical performance and the good consistency in particular.


2002 ◽  
Vol 127 (3) ◽  
pp. 267-273 ◽  
Author(s):  
C.Y Lung ◽  
K.C Fan ◽  
J Mou ◽  
W.B Liao

2012 ◽  
Vol 461 ◽  
pp. 402-406
Author(s):  
Peng Min Dong ◽  
Bo Zhao ◽  
Zong Liang Zhu ◽  
Yong Dong Qiang ◽  
Zhi Gang Yao ◽  
...  

This article is based on China's Gansu Jiuquan areas of natural environment,in view of field operations commonly used wild barrack winter heating requirements,design the solar energy storage and auxiliary electrical heating heating system,and the flat collector to use double working medium indirect heating mode,with antifreeze as collection hot flowing,with water as storage and heating medium,effectively solved the extreme temperatures anti-freeze、guard against sandstorm problem,achieve the safe、energy-saving and environmental protection heating goal.


Author(s):  
Swapnil Dubey

Abstract In Singapore, roughly 20% of the energy consumed by households is used for water heating and almost all the energy consumed by conventional electric water heaters. One of the significant potential energy saving opportunities lies in using energy-efficient water heating appliances. Recently, there has been a move towards energy-saving design and the use of natural refrigerants over fluorocarbons. Unlike conventional electric storage water heaters, which use electricity to heat water directly, heat pump storage water heaters use electricity only to operate a pump that circulates refrigerants around the system. This refrigerant collects heat from the surrounding atmosphere and transfers it to the water. CO2 heat pumps have low global warming potential when compared to other refrigerants based heat pumps, has zero ozone depletion potential, inexpensive, non-flammable, generate high temperature. In this project, a comparative analysis of three different water heater types has been presented based on real-time usage and living-lab conditions under the tropical climate of Singapore. These three types are: 1. Electrical heater storage type 2. Hybrid heat pump with auxiliary electrical heating water heater 3. CO2 heat pump water heater without auxiliary heating Study found significant energy saving using CO2 heat pump compared to other water heating system and also better for environment.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 691
Author(s):  
Yang Zhao ◽  
Xi Wang ◽  
Qibin Zhou ◽  
Zhenxing Wang ◽  
Xiaoyan Bian

In order to solve the problem of icing on the surface of wind turbine blade, a heating system that includes a carbon fiber net (CFN) and power cables is proposed recently. When lightning strikes at the blade with a de-icing heating system, the blade and its heating system are more easily damaged due to the overvoltage between the lightning protection system (LPS) of the blade and the heating system. In this paper, the models of a wind turbine blade with the de-icing heating system are established by Alternative Transients Program/Electromagnetic Transients Program (ATP–EMTP) and the accuracy of models is verified through an experiment. With these models, the influence of lightning current, surge protective devices (SPDs) and earthing resistance of wind turbine are analyzed by calculating the voltage between the down-conductor of the LPS and the heating system. The results show that the voltage is positively correlated with lightning current amplitude and negatively correlated with the front time of lightning current. SPDs are quite useful to reduce the voltage, and an optimal installation scheme of SPDs is obtained by simulation. It is noted that voltage decreases slightly with the increasing earthing resistance with the optimal installation scheme of SPDs.


Sign in / Sign up

Export Citation Format

Share Document