Security in Opportunistic Sensor Network and IoT having Sensors using Light Weight Key Generation and Cryptographic Algorithm

Author(s):  
Mohammed Salman Arafath ◽  
Khaleel Ur Rahman Khan ◽  
K.V.N. Sunitha
Author(s):  
P. Gayathri ◽  
Syed Umar ◽  
G. Sridevi ◽  
N. Bashwanth ◽  
Royyuru Srikanth

As more increase in usage of communications and developing them more user friendly. While developing those communications, we need to take care of security and safety of user’s data. Many researchers have developed many complex algorithms to maintain security in user’s application. Among those one of the best algorithms are cryptography based, in which user will be safe side mostly from the attackers.  We already had some AES algorithm which uses very complex cryptographic algorithm to increase the performance and more usage of lookup tables. So the cache timing attackers will correlates the details to encrypt the data under known key with the unknown key. So, for this we provide an improvised solution. This paper deals with an extension of public-key encryption and decryption support including a private key. The private key is generated with the combination of AES and ECC. In general AES, key length is 128 bits with 10 times of iterations. But with this, users won’t get efficient security for their operations, so to increase the security level we are implementing 196-bit based encryption with 12 times round-key generation iterations. By this enhancement, we can assure to users to high level security and can keep users data in confidential way.


2018 ◽  
Vol 78 (23) ◽  
pp. 32633-32657 ◽  
Author(s):  
Norah Alassaf ◽  
Adnan Gutub ◽  
Shabir A. Parah ◽  
Manal Al Ghamdi

The wireless sensor network is a large number of tiny nodes installed in insecure environment for monitoring, gathering and transferring data and are prone to security threats for its limited resources. In order to transmit the data and to protect from different attacks in the network, security is maintained. To achieve confidentiality, authenticity and authorization of data which secure the data from different attacks cryptographic algorithm were used. The number of keys used in the cryptographic algorithm determines the security of the data. Cryptographic algorithms are broadly classified into two types symmetric cryptography and asymmetric cryptography. In the symmetric key cryptographic algorithm, a secret key is shared in the network and in asymmetric key cryptographic algorithm two keys are used for data security. In wireless sensor network, symmetric key cryptography required more storage to store the key among all the nodes of the network and in asymmetric key cryptography more computation time is require for the data encryption and decryption. To avoid memory and computation overhead we proposed a hybrid cryptosystem to handle the security in the wireless sensor network. Initially shared key is exchanged among nodes using ECC which is a public key algorithm. Data is encrypted and decrypted using RC4 symmetric key algorithm. Various performance measures such as time taken for encryption and decryption process and memory needed for storing cipher text data. The proposed model shows faster encryption of data and takes less memory for key storage as compared to the traditional approach.


2019 ◽  
Vol 25 (6) ◽  
pp. 67-82
Author(s):  
Nadia A. Shiltagh ◽  
Mahmood Z. Abdullah ◽  
Ahmed R. x Ahmed R. Zarzoor

With wireless sensor network (WSN) wide applications in popularity, securing its data becomes a requirement. This can be accomplished by encrypting sensor node data. In this paper a new an efficient symmetric cryptographic algorithm is presented. This algorithm is called wireless sensor network wavelet curve ciphering system (WSN-WCCS).  The algorithm idea based on discrete wavelet transformation to generate keys for each node in WSN.  It implements on hierarchical clustering WSN using LEACH protocol. Python programming language version 2.7 was used to create the simulator of WSN framework and implement a WSN-WCCS algorithm. The simulation result of the proposed WSN-WCCS with other symmetric algorithms has shown that its execution time fastest among AES, 3DES and DES 15%, 55% and 17%.  


2018 ◽  
Vol 7 (4.36) ◽  
pp. 293
Author(s):  
Mustafa M. Abd Zaid ◽  
Dr. Soukaena Hassan

The computing devices utilized as a part of an extensive class of remote correspondence systems, for example, cell phones, remote sensor systems (WSNs), vehicular ad hoc networks (VANETs), mobile ad hoc networks (MANETs), Internet of Things (IoT), body area networks (BANs) and so on, are little and asset compelled. In the current developments of the resource constraint environments, the trend is shifted towards lightweight cryptographic algorithm. Many lightweight cryptographic algorithms have been developed and also existed algorithms are modified in terms of resource constraint environments. One of such new procedures is utilizing three prime numbers for RSA cryptosystem, which is not easily breakable. Our approach using three prime number rather than two prime-dependent systems to get (n) with same length of standard RSA but less bits for prime numbers. The suggested algorithm has speed enhancement on standard RSA key generation side and decryption side by utilizing three primes and the Chinese Reminder Theorem (CRT). The results indicate that the average of speed improvement is ~80% in key generation process, ~96% in decryption process, and only 4% in the encryption process.   


Sign in / Sign up

Export Citation Format

Share Document