A Cascaded kalman filter model-aided inertial navigation system for underwater vehicle

Author(s):  
Hussein Alawieh ◽  
Jihad Sahili
Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2365
Author(s):  
Danhe Chen ◽  
K. A. Neusypin ◽  
M. S. Selezneva

More accurate navigation systems are always required for autonomous unmanned underwater vehicles (AUUV)s under various circumstances. In this paper, a measuring complex of a heavy unmanned underwater vehicle (UUV) was investigated. The measuring complex consists of an inertial navigation platform system, a Doppler lag (DL) and an estimation algorithm. During a relatively long-term voyage of an UUV without surfacing and correction from buoys and stationary stations, errors of the measuring complex will increase over time. The increase in errors is caused by an increase in the deviation angles of the gyro platform relative to the accompanying trihedron of the selected coordinate system. To reduce these angles, correction is used in the structure of the inertial navigation system (INS) using a linear regulator. To increase accuracy, it is proposed to take into account the nonlinear features of INS errors; an adaptive nonlinear Kalman filter and a nonlinear controller were used in the correction scheme. Considering that, a modified nonlinear Kalman filter and a regulator in the measuring complex are proposed to improve the accuracy of the measurement information, and modification of the nonlinear Kalman filter was performed through a genetic algorithm, in which the regulator was developed by the State Dependent Coefficient (SDC) method of the formulated model. Modeling combined with a semi-natural experiment with a real inertial navigation system for the UUV demonstrated the efficiency and effectiveness of the proposed algorithms.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Lijun Song ◽  
Zhongxing Duan ◽  
Bo He ◽  
Zhe Li

The centralized Kalman filter is always applied in the velocity and attitude matching of Transfer Alignment (TA). But the centralized Kalman has many disadvantages, such as large amount of calculation, poor real-time performance, and low reliability. In the paper, the federal Kalman filter (FKF) based on neural networks is used in the velocity and attitude matching of TA, the Kalman filter is adjusted by the neural networks in the two subfilters, the federal filter is used to fuse the information of the two subfilters, and the global suboptimal state estimation is obtained. The result of simulation shows that the federal Kalman filter based on neural networks is better in estimating the initial attitude misalignment angle of inertial navigation system (INS) when the system dynamic model and noise statistics characteristics of inertial navigation system are unclear, and the estimation error is smaller and the accuracy is higher.


Author(s):  
Mahdi Fathi ◽  
Nematollah Ghahramani ◽  
Mohammad Ali Shahi Ashtiani ◽  
Ali Mohammadi ◽  
Mohsen Fallah

2018 ◽  
Vol 72 (3) ◽  
pp. 741-758 ◽  
Author(s):  
W.I. Liu ◽  
Zhixiong Li ◽  
Zhichao Zhang

A Laser Scanning aided Inertial Navigation System (LSINS) is able to provide highly accurate position and attitude information by aggregating laser scanning and inertial measurements under the assumption that the rigid transformation between sensors is known. However, a LSINS is inevitably subject to biased estimation and filtering divergence errors due to inconsistent state estimations between the inertial measurement unit and the laser scanner. To bridge this gap, this paper presents a novel integration algorithm for LSINS to reduce the inconsistences between different sensors. In this new integration algorithm, the Radial Basis Function Neural Networks (RBFNN) and Singular Value Decomposition Unscented Kalman Filter (SVDUKF) are used together to avoid inconsistent state estimations. Optimal error estimation in the LSINS integration process is achieved to reduce the biased estimation and filtering divergence errors through the error state and measurement error model built by the proposed method. Experimental tests were conducted to evaluate the navigation performance of the proposed method in Global Navigation Satellite System (GNSS)-denied environments. The navigation results demonstrate that the relationship between the laser scanner coordinates and the inertial sensor coordinates can be established to reduce sensor measurement inconsistencies, and LSINS position accuracy can be improved by 23·6% using the proposed integration method compared with the popular Extended Kalman Filter (EKF) algorithm.


2012 ◽  
Vol 546-547 ◽  
pp. 1360-1365
Author(s):  
Xing Xing Dai ◽  
Ling Xie ◽  
Yu Liang Mao ◽  
Chun Lei Song

Zero Velocity Update (ZUPT) is an essential method of error control in Stapdown Inertial Navigation System (SINS), which is extensively used because of its cheapness and efficiency. ZUPT uses the output of velocity error of SINS when the carrier is parking, to update the errors of other items in SINS. This method can improve the position and direction precisions of SINS. Kalman filter is chosen as the method of ZUPT to correct the velocity and position errors in SINS in this article. The method of ZUPT based on Kalman filter is applied to the vehicle experiment. The results of the vehicle experiment indicate that the ZUPT based on Kalman filter is efficient and powerful in error control, and the Kalman filter designed based on SINS is proper.


Sign in / Sign up

Export Citation Format

Share Document