Supervised Classification of Plant Image Based on Attention Mechanism

Author(s):  
Jie Li ◽  
Jie Yang
2020 ◽  
Author(s):  
Kunal Srivastava ◽  
Ryan Tabrizi ◽  
Ayaan Rahim ◽  
Lauryn Nakamitsu

<div> <div> <div> <p>Abstract </p> <p>The ceaseless connectivity imposed by the internet has made many vulnerable to offensive comments, be it their physical appearance, political beliefs, or religion. Some define hate speech as any kind of personal attack on one’s identity or beliefs. Of the many sites that grant the ability to spread such offensive speech, Twitter has arguably become the primary medium for individuals and groups to spread these hurtful comments. Such comments typically fail to be detected by Twitter’s anti-hate system and can linger online for hours before finally being taken down. Through sentiment analysis, this algorithm is able to distinguish hate speech effectively through the classification of sentiment. </p> </div> </div> </div>


2021 ◽  
Vol 9 (5) ◽  
pp. 1034
Author(s):  
Carlos Sabater ◽  
Lorena Ruiz ◽  
Abelardo Margolles

This study aimed to recover metagenome-assembled genomes (MAGs) from human fecal samples to characterize the glycosidase profiles of Bifidobacterium species exposed to different prebiotic oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides and human milk oligosaccharides, HMOs) as well as high-fiber diets. A total of 1806 MAGs were recovered from 487 infant and adult metagenomes. Unsupervised and supervised classification of glycosidases codified in MAGs using machine-learning algorithms allowed establishing characteristic hydrolytic profiles for B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum, yielding classification rates above 90%. Glycosidase families GH5 44, GH32, and GH110 were characteristic of B. bifidum. The presence or absence of GH1, GH2, GH5 and GH20 was characteristic of B. adolescentis, B. breve and B. pseudocatenulatum, while families GH1 and GH30 were relevant in MAGs from B. longum. These characteristic profiles allowed discriminating bifidobacteria regardless of prebiotic exposure. Correlation analysis of glycosidase activities suggests strong associations between glycosidase families comprising HMOs-degrading enzymes, which are often found in MAGs from the same species. Mathematical models here proposed may contribute to a better understanding of the carbohydrate metabolism of some common bifidobacteria species and could be extrapolated to other microorganisms of interest in future studies.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhe Yang ◽  
Dejan Gjorgjevikj ◽  
Jianyu Long ◽  
Yanyang Zi ◽  
Shaohui Zhang ◽  
...  

AbstractSupervised fault diagnosis typically assumes that all the types of machinery failures are known. However, in practice unknown types of defect, i.e., novelties, may occur, whose detection is a challenging task. In this paper, a novel fault diagnostic method is developed for both diagnostics and detection of novelties. To this end, a sparse autoencoder-based multi-head Deep Neural Network (DNN) is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data. The detection of novelties is based on the reconstruction error. Moreover, the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function, instead of performing the pre-training and fine-tuning phases required for classical DNNs. The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer. The results show that its performance is satisfactory both in detection of novelties and fault diagnosis, outperforming other state-of-the-art methods. This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect, but also detect unknown types of defects.


2021 ◽  
Vol 61 ◽  
pp. 101252
Author(s):  
César Capinha ◽  
Ana Ceia-Hasse ◽  
Andrew M. Kramer ◽  
Christiaan Meijer

2017 ◽  
Vol 9 (8) ◽  
pp. 771 ◽  
Author(s):  
Yanjun Wang ◽  
Qi Chen ◽  
Lin Liu ◽  
Dunyong Zheng ◽  
Chaokui Li ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193757 ◽  
Author(s):  
Inti Anabela Pagnuco ◽  
María Victoria Revuelta ◽  
Hernán Gabriel Bondino ◽  
Marcel Brun ◽  
Arjen ten Have

Sign in / Sign up

Export Citation Format

Share Document