Tire-road-friction-estimation-based braking force distribution for AWD electrified vehicles with a single electric machine

Author(s):  
Deepak Paul ◽  
Efstathios Velenis ◽  
Dongpu Cao
Author(s):  
Deepak Paul ◽  
Efstathios Velenis ◽  
François Humbert ◽  
Dongpu Cao ◽  
Tamas Dobo ◽  
...  

Author(s):  
Shuangshuang Chen ◽  
Sihao Ding ◽  
L. Srikar Muppirisetty ◽  
Yiannis Karayiannidis ◽  
Marten Bjorkman

Author(s):  
Yuan-Ting Lin ◽  
Chyuan-Yow Tseng ◽  
Jao-Hwa Kuang ◽  
Yeong-Maw Hwang

The combined brake system (CBS) is a mechanism that links the front and rear brakes for scooters. For two-wheeled scooters, a CBS with appropriate braking force distribution can reduce the risk of crashing accidents due to insufficient driving proficiency. The design of the braking force distribution for a CBS is challenging to the designer because it has to fulfill many requirements such as braking performance, ride comfort, reliability, and low costs. This paper proposes a systematic method to optimize the parameters of CBS. The evaluation indexes for the design are first discussed. The steps to determine the critical parameter to meet the indexes and a method to predict braking performance are developed. Finally, driving tests are carried out to verify the effectiveness of the proposed method. Experimental results showed that the deceleration of the tested scooter equipped with the designed CBS achieves an average mean fully developed deceleration (MFDD) of 5.246 m/s2, higher than the homologation requirement. Furthermore, the proposed method’s prediction of braking performance is in good agreement with the test results, with errors <1%.


2018 ◽  
Vol 57 (4) ◽  
pp. 493-519 ◽  
Author(s):  
Liang Shao ◽  
Chi Jin ◽  
Cornelia Lex ◽  
Arno Eichberger

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987776 ◽  
Author(s):  
Shengqin Li ◽  
Bo Yu ◽  
Xinyuan Feng

Electric vehicles can convert the kinetic energy of the vehicle into electric energy for recycling. A reasonable braking force distribution strategy is the key to ensure braking stability and the energy recovery rate. For an electric vehicle, based on the ECE regulation curve and ideal braking force distribution (I curve), the braking force distribution strategy of the front and rear axles is designed to study the braking energy recovery control strategy. The fuzzy control method is adopted while the charging power limit of the battery is considered to correct the regenerative braking torque of the motor, the ratio of the regenerative braking force of the motor to the front axle braking force is designed according to different braking strengths, then the braking force distribution and braking energy recovery control strategies for regenerative braking and friction braking are developed. The simulation model of combined vehicle and energy recovery control strategy is established by Simulink and Cruise software. The braking energy recovery control strategy of this article is verified under different braking conditions and New European Driving Cycle conditions. The results show that the control strategy proposed in this article meets the requirements of braking stability. Under the condition of initial state of charge of 75%, the variation of state of charge of braking control strategy in this article is reduced by 8.22%, and the state of charge of braking strategy based on I curve reduces by 9.12%. The braking force distribution curves of the front and rear axle are in line with the braking characteristics, can effectively recover the braking energy, and improve the battery state of charge. Taking the using range of 95%–5% of battery state of charge as calculation target, the cruising range of vehicle with braking control strategy of this article increases to 136.64 km, which showed that the braking control strategy in this article could increase the cruising range of the electric vehicle.


Sign in / Sign up

Export Citation Format

Share Document