A New Paradigm for Intelligent Collision Avoidance via Interactive and Interdependent Generic Maneuvers

Author(s):  
Ravipriya Ranatunga ◽  
Sisil Kumarawadu ◽  
Pawan Lingras ◽  
Tsu-Tian Lee
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1218
Author(s):  
Natalia Chinchilla-Romero ◽  
Jorge Navarro-Ortiz ◽  
Pablo Muñoz ◽  
Pablo Ameigeiras

The number of connected IoT devices is significantly increasing and it is expected to reach more than two dozens of billions of IoT connections in the coming years. Low Power Wide Area Networks (LPWAN) have become very relevant for this new paradigm due to features such as large coverage and low power consumption. One of the most appealing technologies among these networks is LoRaWAN. Although it may be considered as one of the most mature LPWAN platforms, there are still open gaps such as its capacity limitations. For this reason, this work proposes a collision avoidance resource allocation algorithm named the Collision Avoidance Resource Allocation (CARA) algorithm with the objective of significantly increase system capacity. CARA leverages the multichannel structure and the orthogonality of spreading factors in LoRaWAN networks to avoid collisions among devices. Simulation results show that, assuming ideal radio link conditions, our proposal outperforms in 95.2% the capacity of a standard LoRaWAN network and increases the capacity by almost 40% assuming a realistic propagation model. In addition, it has been verified that CARA devices can coexist with LoRaWAN traditional devices, thus allowing the simultaneous transmissions of both types of devices. Moreover, a proof-of-concept has been implemented using commercial equipment in order to check the feasibility and the correct operation of our solution.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 548
Author(s):  
Marcello Chiurazzi ◽  
Alessandro Diodato ◽  
Irene Vetrò ◽  
Joan Ortega Alcaide ◽  
Arianna Menciassi ◽  
...  

Humans and robots are becoming co-workers, both in industrial and medical applications. This new paradigm raises problems related to human safety. To accomplish and solve this issue, many researchers have developed collision avoidance strategies—mainly relying on potential field approaches—in which attractive and repulsive virtual forces are generated between manipulators and objects within a collaborative workspace. The magnitude of such virtual forces strongly depends on the relative distance between the manipulators and the approaching agents, as well on their relative velocity. In this paper, authors developed an intrinsically distributed probabilistic algorithm to compute distances between the manipulator surfaces and humans, allowing tuning the computational time versus estimation accuracy, based on the application requirements. At each iteration, the algorithm computes the human–robot distances, considering all the Cartesian points within a specific geometrical domain, built around humans’ kinematic chain, and selecting a random subset of points outside of it. Experimental validation was performed in a dynamic and unstructured condition to assess the performance of the algorithm, simulating up to six humans into the shared workspace. Tests showed that the algorithm, with the selected hardware, is able to estimate the distance between the human and the manipulator with a RMSE of 5.93 mm (maximum error of 34.86 mm).


2000 ◽  
Vol 179 ◽  
pp. 177-183
Author(s):  
D. M. Rust

AbstractSolar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields’ sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.


Author(s):  
Markus Krüger ◽  
Horst Krist

Abstract. Recent studies have ascertained a link between the motor system and imagery in children. A motor effect on imagery is demonstrated by the influence of stimuli-related movement constraints (i. e., constraints defined by the musculoskeletal system) on mental rotation, or by interference effects due to participants’ own body movements or body postures. This link is usually seen as qualitatively different or stronger in children as opposed to adults. In the present research, we put this interpretation to further scrutiny using a new paradigm: In a motor condition we asked our participants (kindergartners and third-graders) to manually rotate a circular board with a covered picture on it. This condition was compared with a perceptual condition where the board was rotated by an experimenter. Additionally, in a pure imagery condition, children were instructed to merely imagine the rotation of the board. The children’s task was to mark the presumed end position of a salient detail of the respective picture. The children’s performance was clearly the worst in the pure imagery condition. However, contrary to what embodiment theories would suggest, there was no difference in participants’ performance between the active rotation (i. e., motor) and the passive rotation (i. e., perception) condition. Control experiments revealed that this was also the case when, in the perception condition, gaze shifting was controlled for and when the board was rotated mechanically rather than by the experimenter. Our findings indicate that young children depend heavily on external support when imagining physical events. Furthermore, they indicate that motor-assisted imagery is not generally superior to perceptually driven dynamic imagery.


Author(s):  
Sarah Schäfer ◽  
Dirk Wentura ◽  
Christian Frings

Abstract. Recently, Sui, He, and Humphreys (2012) introduced a new paradigm to measure perceptual self-prioritization processes. It seems that arbitrarily tagging shapes to self-relevant words (I, my, me, and so on) leads to speeded verification times when matching self-relevant word shape pairings (e.g., me – triangle) as compared to non-self-relevant word shape pairings (e.g., stranger – circle). In order to analyze the level at which self-prioritization takes place we analyzed whether the self-prioritization effect is due to a tagging of the self-relevant label and the particular associated shape or due to a tagging of the self with an abstract concept. In two experiments participants showed standard self-prioritization effects with varying stimulus features or different exemplars of a particular stimulus-category suggesting that self-prioritization also works at a conceptual level.


2003 ◽  
Vol 58 (4) ◽  
pp. 305-312 ◽  
Author(s):  
Carol J. Gill ◽  
Donald G. Kewman ◽  
Ruth W. Brannon

1995 ◽  
Vol 40 (11) ◽  
pp. 1072-1073
Author(s):  
Michael J. Lambert ◽  
R. Scott Nebeker

1981 ◽  
Vol 26 (7) ◽  
pp. 507-509 ◽  
Author(s):  
Craig T. Ramey ◽  
David MacPhee

PsycCRITIQUES ◽  
2005 ◽  
Vol 50 (47) ◽  
Author(s):  
Mark H. Waugh

Sign in / Sign up

Export Citation Format

Share Document