Recognition of drug-target interaction patterns using genetic algorithm-optimized Bayesian-regularized neural networks and support vector machines

Author(s):  
Michael Fernandez ◽  
Akinori Sarai ◽  
Shandar Ahmad
Information ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 212-227 ◽  
Author(s):  
Fang Zong ◽  
Yu Bai ◽  
Xiao Wang ◽  
Yixin Yuan ◽  
Yanan He

2010 ◽  
Vol 39 ◽  
pp. 247-252
Author(s):  
Sheng Xu ◽  
Zhi Juan Wang ◽  
Hui Fang Zhao

A two-stage neural network architecture constructed by combining potential support vector machines (P-SVM) with genetic algorithm (GA) and gray correlation coefficient analysis (GCCA) is proposed for patent innovation factors evolution. The enterprises patent innovation is complex to conduct due to its nonlinearity of influenced factors. It is necessary to make a trade off among these factors when some of them conflict firstly. A novel way about nonlinear regression model with the potential support vector machines (P-SVM) is presented in this paper. In the model development, the genetic algorithm is employed to optimize P-SVM parameters selection. After the selected key factors by the PSVM with GA model, the main factors that affect patent innovation generation have been quantitatively studied using the method of gray correlation coefficient analysis. Using a set of real data in China, the results show that the methods developed in this paper can provide valuable information for patent innovation management and related municipal planning projects.


Author(s):  
Achyuth Kothuru ◽  
Sai Prasad Nooka ◽  
Rui Liu

Machining industry has been evolving towards implementation of automation into the process for higher productivity and efficiency. Although many studies have been conducted in the past to develop intelligent monitoring systems in various application scenarios of machining processes, most of them just focused on cutting tools without considering the influence due to the non-uniform hardness of workpiece material. This study develops a compact, reliable, and cost-effective intelligent Tool Condition Monitoring (TCM) model to detect the cutting tool wear in machining of the workpiece material with hardness variation. The generated audible sound signals during the machining process will be analyzed by state of the art artificial intelligent techniques, Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs), to predict the tool condition and the hardness variation of the workpiece. A four-level classification model is developed for the system to detect the tool wear condition based on the width of the flank wear land and hardness variation of the workpiece. The study also involves comparative analysis between two employed artificial intelligent techniques to evaluate the performance of models in predicting the tool wear level condition and workpiece hardness variation. The proposed intelligent models have shown a significant prediction accuracy in detecting the tool wear and from the audible sound into the proposed multi-classification wear class in the end-milling process of non-uniform hardened workpiece.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257901
Author(s):  
Yanjing Bi ◽  
Chao Li ◽  
Yannick Benezeth ◽  
Fan Yang

Phoneme pronunciations are usually considered as basic skills for learning a foreign language. Practicing the pronunciations in a computer-assisted way is helpful in a self-directed or long-distance learning environment. Recent researches indicate that machine learning is a promising method to build high-performance computer-assisted pronunciation training modalities. Many data-driven classifying models, such as support vector machines, back-propagation networks, deep neural networks and convolutional neural networks, are increasingly widely used for it. Yet, the acoustic waveforms of phoneme are essentially modulated from the base vibrations of vocal cords, and this fact somehow makes the predictors collinear, distorting the classifying models. A commonly-used solution to address this issue is to suppressing the collinearity of predictors via partial least square regressing algorithm. It allows to obtain high-quality predictor weighting results via predictor relationship analysis. However, as a linear regressor, the classifiers of this type possess very simple topology structures, constraining the universality of the regressors. For this issue, this paper presents an heterogeneous phoneme recognition framework which can further benefit the phoneme pronunciation diagnostic tasks by combining the partial least square with support vector machines. A French phoneme data set containing 4830 samples is established for the evaluation experiments. The experiments of this paper demonstrates that the new method improves the accuracy performance of the phoneme classifiers by 0.21 − 8.47% comparing to state-of-the-arts with different data training data density.


Sign in / Sign up

Export Citation Format

Share Document