Ground Clutter Filter Implementation of dual-PRF signals for X-band weather radar

Author(s):  
Xiao Liang ◽  
Tao Wang
Keyword(s):  
2009 ◽  
Vol 6 (5) ◽  
pp. 6035-6085 ◽  
Author(s):  
C. Z. van de Beek ◽  
H. Leijnse ◽  
J. N. M. Stricker ◽  
R. Uijlenhoet ◽  
H. W. J. Russchenberg

Abstract. This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The high spatial (120 m) and temporal (16 s) resolution of the radar combined with the extent of the database make this study a climatological analysis of the potential for high-resolution rainfall measurement with non-polarimetric X-band radar over completely flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban) catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.


2010 ◽  
Vol 14 (2) ◽  
pp. 205-221 ◽  
Author(s):  
C. Z. van de Beek ◽  
H. Leijnse ◽  
J. N. M. Stricker ◽  
R. Uijlenhoet ◽  
H. W. J. Russchenberg

Abstract. This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The aim of this paper is to present a thorough analysis of a climatological dataset using a high spatial (120 m) and temporal (16 s) resolution X-band radar. This makes it a study of the potential for high-resolution rainfall measurements with non-polarimetric X-band radar over flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than what can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban) catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.


2015 ◽  
Vol 32 (7) ◽  
pp. 1341-1355 ◽  
Author(s):  
S. J. Rennie ◽  
M. Curtis ◽  
J. Peter ◽  
A. W. Seed ◽  
P. J. Steinle ◽  
...  

AbstractThe Australian Bureau of Meteorology’s operational weather radar network comprises a heterogeneous radar collection covering diverse geography and climate. A naïve Bayes classifier has been developed to identify a range of common echo types observed with these radars. The success of the classifier has been evaluated against its training dataset and by routine monitoring. The training data indicate that more than 90% of precipitation may be identified correctly. The echo types most difficult to distinguish from rainfall are smoke, chaff, and anomalous propagation ground and sea clutter. Their impact depends on their climatological frequency. Small quantities of frequently misclassified persistent echo (like permanent ground clutter or insects) can also cause quality control issues. The Bayes classifier is demonstrated to perform better than a simple threshold method, particularly for reducing misclassification of clutter as precipitation. However, the result depends on finding a balance between excluding precipitation and including erroneous echo. Unlike many single-polarization classifiers that are only intended to extract precipitation echo, the Bayes classifier also discriminates types of nonprecipitation echo. Therefore, the classifier provides the means to utilize clear air echo for applications like data assimilation, and the class information will permit separate data handling of different echo types.


2018 ◽  
Vol 7 (4.44) ◽  
pp. 165 ◽  
Author(s):  
Ratih Indri Hapsari ◽  
Gerard Aponno ◽  
Rosa Andrie Asmara ◽  
Satoru Oishi

Rainfall-triggered debris flow has caused multiple impacts to the environment. It. is regarded as the most severe secondary hazards of volcanic eruption. However, limited access to the active volcano slope restricts the ground rain measurement as well as the direct delivery of risk information. In this study, an integrated information system is proposed for volcanic-related disaster mitigation under the framework of X-Plore/X-band Polarimetric Radar for Prevention of Water Disaster. In the first part, the acquisition and processing of high-resolution X-band dual polarimetric weather/X-MP radar data in real-time scheme for demonstrating the disaster-prone region are described. The second part presents the design of rainfall resource database and extensive maps coverage of predicted hazard information in GIS web-based platform accessible both using internet and offline. The proposed platform would be useful for communicating the disaster risk prediction based on weather radar in operational setting.  


2004 ◽  
Vol 22 (11) ◽  
pp. 3971-3982 ◽  
Author(s):  
Y. Umemoto ◽  
M. Teshiba ◽  
Y. Shibagaki ◽  
H. Hashiguchi ◽  
M. D. Yamanaka ◽  
...  

Abstract. A special observation campaign (X-BAIU), using various instruments (wind profilers, C-band weather radars, X-band Doppler radars, rawinsondes, etc.), was carried out in Kyushu (western Japan) during the Baiu season, from 1998 to 2002. In the X-BAIU-99 and -02 observations, a line-shaped orographic rainband extending northeastward from the Koshikijima Islands appeared in the low-level strong wind with warm-moist airs. The weather radar observation indicated that the rainband was maintained for 11h. The maximum length and width of the rainband observed in 1999 was ~200km and ~20km, respectively. The rainband observed in 2002 was not so developed compared with the case in 1999. The Froude number averaged from sea level to the top of the Koshikijima Islands (~600m) was large (>1), and the lifting condensation level was below the tops of the Koshikijima Islands. Thus, it is suggested that the clouds organizing the rainband are formed by the triggering of the mountains on the airflow passing over them. The vertical profile of horizontal wind in/around the rainband was investigated in the wind profiler observations. In the downdraft region 60km from the Koshikijima Islands, strong wind and its clockwise rotation with increasing height was observed below 3km altitude. In addition, a strong wind component perpendicular to the rainband was observed when the rainband was well developed. These wind behaviors were related to the evolution of the rainband.


Sign in / Sign up

Export Citation Format

Share Document