scholarly journals Bayesian Echo Classification for Australian Single-Polarization Weather Radar with Application to Assimilation of Radial Velocity Observations

2015 ◽  
Vol 32 (7) ◽  
pp. 1341-1355 ◽  
Author(s):  
S. J. Rennie ◽  
M. Curtis ◽  
J. Peter ◽  
A. W. Seed ◽  
P. J. Steinle ◽  
...  

AbstractThe Australian Bureau of Meteorology’s operational weather radar network comprises a heterogeneous radar collection covering diverse geography and climate. A naïve Bayes classifier has been developed to identify a range of common echo types observed with these radars. The success of the classifier has been evaluated against its training dataset and by routine monitoring. The training data indicate that more than 90% of precipitation may be identified correctly. The echo types most difficult to distinguish from rainfall are smoke, chaff, and anomalous propagation ground and sea clutter. Their impact depends on their climatological frequency. Small quantities of frequently misclassified persistent echo (like permanent ground clutter or insects) can also cause quality control issues. The Bayes classifier is demonstrated to perform better than a simple threshold method, particularly for reducing misclassification of clutter as precipitation. However, the result depends on finding a balance between excluding precipitation and including erroneous echo. Unlike many single-polarization classifiers that are only intended to extract precipitation echo, the Bayes classifier also discriminates types of nonprecipitation echo. Therefore, the classifier provides the means to utilize clear air echo for applications like data assimilation, and the class information will permit separate data handling of different echo types.

Geomatics ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 347-368
Author(s):  
Tomeu Rigo ◽  
Maria Carmen Llasat ◽  
Laura Esbrí

The single polarization C-Band weather radar network of the Meteorological Service of Catalonia covers the entire region (32,000 km2), which allows it to apply a series of corrections that improve preliminary estimations of the rainfall field (hourly and daily). In addition, an automatic re-processing using automatic weather stations helps to incorporate ground-based information. The last process of the quantitative precipitation estimation (QPE) is running the end-product again eight days later, when the data have been reviewed and corrected in the case of detecting anomalies in the radar or gauge data. These corrections are applied operationally, with the fields generated and stored automatically. The QPE fields are generated in the GeoTIFF format, allowing easy use with multiple applications and simplifying processes such as quality control. In this way, the analysis of a 10 year period of GeoTIFF QPE daily data compared with ground rainfall values is introduced. The results help to understand different points regarding the functioning of the network such as the dependance on the type of precipitation and the seasonality. In addition, the description of a heavy rainfall episode (22 October 2019) shows the variations and improvements in the different products. The main conclusions refer to how using GeoTIFF combined with point data (rain gauges), it is possible to ensure simple but effective quality control of an operational radar network.


2021 ◽  
Vol 13 (15) ◽  
pp. 2936
Author(s):  
Jeong-Eun Lee ◽  
Soohyun Kwon ◽  
Sung-Hwa Jung

Monitoring calibration bias in reflectivity (ZH) in an operational S-band dual-polarization weather radar is the primary requisite for monitoring and prediction (nowcasting) of severe weather and routine weather forecasting using a weather radar network. For this purpose, we combined methods based on self-consistency (SC), ground clutter (GC) monitoring, and intercomparison to monitor the ZH in real time by complementing the limitations of each method. The absolute calibration bias can be calculated based on the SC between dual-polarimetric observations. Unfortunately, because SC is valid for rain echoes, it is impossible to monitor reflectivity during the non-precipitation period. GC monitoring is an alternative method for monitoring changes in calibration bias regardless of weather conditions. The statistics of GC ZH near radar depend on the changes in radar system status, such as antenna pointing and calibration bias. The change in GC ZH relative to the baseline was defined as the relative calibration adjustment (RCA). The calibration bias was estimated from the change in RCA, which was similar to that estimated from the SC. The ZH in the overlapping volume of adjacent radars was compared to verify the homogeneity of ZH over the radar network after applying the calibration bias estimated from the SC. The mean bias between two radars was approximately 0.0 dB after correcting calibration bias. We can conclude that the combined method makes it possible to use radar measurements, which are immune to calibration bias, and to diagnose malfunctioning radar systems as soon as possible.


Author(s):  
Nawal Husnoo ◽  
Timothy Darlington ◽  
Sebastián Torres ◽  
David Warde

AbstractIn this work, we present a new Quantitative-Precipitation-Estimation (QPE) quality-control (QC) algorithm for the UK weather radar network. The real-time adaptive algorithm uses a neural network (NN) to select data from the lowest useable elevation scan to optimize the combined performance of two other radar data correction algorithms: ground clutter mitigation (using CLEAN-AP) and vertical profile of reflectivity (VPR) correction. The NN is trained using 3D tiles of observed uncontaminated weather signals that are systematically combined with ground-clutter signals collected under dry weather conditions. This approach provides a way to simulate radar signals with a wide range of clutter contamination conditions and with realistic spatial structures while providing the uncontaminated “truth” with respect to which the performance of the QC algorithm can be measured. An evaluation of QPE products obtained with the proposed QC algorithm demonstrates superior performance as compared to those obtained with the QC algorithm currently used in operations. Similar improvements are also illustrated using radar observations from two periods of prolonged precipitation, showing a better balance between overestimation errors from using clutter-contaminated low-elevation radar data and VPR-induced errors from using high-elevation radar data.


2005 ◽  
Vol 22 (5) ◽  
pp. 575-582 ◽  
Author(s):  
John Y. N. Cho ◽  
Edward S. Chornoboy

Abstract Multiple pulse repetition interval (multi-PRI) transmission is part of an adaptive signal transmission and processing algorithm being developed to aggressively combat range–velocity ambiguity in weather radars. In the past, operational use of multi-PRI pulse trains has been hampered due to the difficulty in clutter filtering. This paper presents finite impulse response clutter filter designs for multi-PRI signals with excellent magnitude and phase responses. These filters provide strong suppression for use on low-elevation scans and yield low biases of velocity estimates so that accurate velocity dealiasing is possible. Specifically, the filters are designed for use in the Terminal Doppler Weather Radar (TDWR) and are shown to meet base data bias requirements equivalent to the Federal Aviation Administration’s specifications for the current TDWR clutter filters. Also an adaptive filter selection algorithm is proposed that bases its decision on clutter power estimated during an initial long-PRI surveillance scan. Simulations show that this adaptive algorithm yields satisfactory biases for reflectivity, velocity, and spectral width. Implementation of such a scheme would enable automatic elimination of anomalous propagation signals and constant adjustment to evolving ground clutter conditions, an improvement over the current TDWR clutter filtering system.


2006 ◽  
Vol 7 ◽  
pp. 127-130 ◽  
Author(s):  
F. Lombardo ◽  
F. Napolitano ◽  
F. Russo ◽  
G. Scialanga ◽  
L. Baldini ◽  
...  

Abstract. Conventional radars, used for atmospheric remote sensing, usually operate at a single polarization and frequency to estimate storm parameters such as rainfallrate and water content. Because of the high variability of the drop size distribution conventional radars do not succeed in obtaining detailed information because they just use horizontal reflectivity. The potentiality of the dual-polarized weather radar is investigated, in order to reject the ground-clutter, using differential reflectivity. In this light, a radar meteorology campaign was conducted over the city of Rome (Italy), collecting measurements by the polarimetric Doppler radar Polar 55C and by a raingauge network. The goodness of the results is tested by comparison of radar rainfall estimates with raingauges rainfall measurements.


2020 ◽  
Vol 27 ◽  
Author(s):  
Zaheer Ullah Khan ◽  
Dechang Pi

Background: S-sulfenylation (S-sulphenylation, or sulfenic acid) proteins, are special kinds of post-translation modification, which plays an important role in various physiological and pathological processes such as cytokine signaling, transcriptional regulation, and apoptosis. Despite these aforementioned significances, and by complementing existing wet methods, several computational models have been developed for sulfenylation cysteine sites prediction. However, the performance of these models was not satisfactory due to inefficient feature schemes, severe imbalance issues, and lack of an intelligent learning engine. Objective: In this study, our motivation is to establish a strong and novel computational predictor for discrimination of sulfenylation and non-sulfenylation sites. Methods: In this study, we report an innovative bioinformatics feature encoding tool, named DeepSSPred, in which, resulting encoded features is obtained via n-segmented hybrid feature, and then the resampling technique called synthetic minority oversampling was employed to cope with the severe imbalance issue between SC-sites (minority class) and non-SC sites (majority class). State of the art 2DConvolutional Neural Network was employed over rigorous 10-fold jackknife cross-validation technique for model validation and authentication. Results: Following the proposed framework, with a strong discrete presentation of feature space, machine learning engine, and unbiased presentation of the underline training data yielded into an excellent model that outperforms with all existing established studies. The proposed approach is 6% higher in terms of MCC from the first best. On an independent dataset, the existing first best study failed to provide sufficient details. The model obtained an increase of 7.5% in accuracy, 1.22% in Sn, 12.91% in Sp and 13.12% in MCC on the training data and12.13% of ACC, 27.25% in Sn, 2.25% in Sp, and 30.37% in MCC on an independent dataset in comparison with 2nd best method. These empirical analyses show the superlative performance of the proposed model over both training and Independent dataset in comparison with existing literature studies. Conclusion : In this research, we have developed a novel sequence-based automated predictor for SC-sites, called DeepSSPred. The empirical simulations outcomes with a training dataset and independent validation dataset have revealed the efficacy of the proposed theoretical model. The good performance of DeepSSPred is due to several reasons, such as novel discriminative feature encoding schemes, SMOTE technique, and careful construction of the prediction model through the tuned 2D-CNN classifier. We believe that our research work will provide a potential insight into a further prediction of S-sulfenylation characteristics and functionalities. Thus, we hope that our developed predictor will significantly helpful for large scale discrimination of unknown SC-sites in particular and designing new pharmaceutical drugs in general.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


2021 ◽  
Vol 13 (10) ◽  
pp. 1989
Author(s):  
Raphaël Nussbaumer ◽  
Baptiste Schmid ◽  
Silke Bauer ◽  
Felix Liechti

Recent and archived data from weather radar networks are extensively used for the quantification of continent-wide bird migration patterns. While the process of discriminating birds from weather signals is well established, insect contamination is still a problem. We present a simple method combining two Doppler radar products within a Gaussian mixture model to estimate the proportions of birds and insects within a single measurement volume, as well as the density and speed of birds and insects. This method can be applied to any existing archives of vertical bird profiles, such as the European Network for the Radar surveillance of Animal Movement repository, with no need to recalculate the huge amount of original polar volume data, which often are not available.


2020 ◽  
Vol 12 (9) ◽  
pp. 1418
Author(s):  
Runmin Dong ◽  
Cong Li ◽  
Haohuan Fu ◽  
Jie Wang ◽  
Weijia Li ◽  
...  

Substantial progress has been made in the field of large-area land cover mapping as the spatial resolution of remotely sensed data increases. However, a significant amount of human power is still required to label images for training and testing purposes, especially in high-resolution (e.g., 3-m) land cover mapping. In this research, we propose a solution that can produce 3-m resolution land cover maps on a national scale without human efforts being involved. First, using the public 10-m resolution land cover maps as an imperfect training dataset, we propose a deep learning based approach that can effectively transfer the existing knowledge. Then, we improve the efficiency of our method through a network pruning process for national-scale land cover mapping. Our proposed method can take the state-of-the-art 10-m resolution land cover maps (with an accuracy of 81.24% for China) as the training data, enable a transferred learning process that can produce 3-m resolution land cover maps, and further improve the overall accuracy (OA) to 86.34% for China. We present detailed results obtained over three mega cities in China, to demonstrate the effectiveness of our proposed approach for 3-m resolution large-area land cover mapping.


Sign in / Sign up

Export Citation Format

Share Document