The Comparison of Canopy Density Measurement Using UAV and Hemispherical Photography for Remote Sensing Based Mapping

Author(s):  
Deha Agus Umarhadi ◽  
Proio Danoedoro ◽  
Pramaditya Wicaksono ◽  
Prima Widayani ◽  
Wahvu Nurbandi ◽  
...  
Author(s):  
Deha Agus Umarhadi ◽  
Projo Danoedoro

UAV and hemispherical photography are common methods used in canopy density measurement. These two methods have opposite viewing angles where hemispherical photography measures canopy density upwardly, while UAV captures images downwardly. This study aims to analyze and compare both methods to be used as the input data for canopy density estimation when linked with a lower spatial resolution of remote sensing data i.e. Landsat image. We correlated the field data of canopy density with vegetation indices (NDVI, MSAVI, and AFRI) from Landsat-8. The canopy density values measured from UAV and hemispherical photography displayed a strong relationship with 0.706 coefficient of correlation. Further results showed that both measurements can be used in canopy density estimation using satellite imagery based on their high correlations with Landsat-based vegetation indices. The highest correlation from downward and upward measurement appeared when linked with NDVI with a correlation of 0.962 and 0.652, respectively. Downward measurement using UAV exhibited a higher relationship compared to hemispherical photography. The strong correlation between UAV data and Landsat data is because both are captured from the vertical direction, and 30 m pixel of Landsat is a downscaled image of the aerial photograph. Moreover, field data collection can be easily conducted by deploying drone to cover inaccessible sample plots.


2015 ◽  
Vol 35 (7) ◽  
Author(s):  
杨存建 YANG Cunjian ◽  
倪静 NI Jing ◽  
周其林 ZHOU Qilin ◽  
程武学 CHENG Wuxue ◽  
韩沙鸥 HAN Sha'ou

Author(s):  
Faisal Ashaari ◽  
Muhammad Kamal ◽  
Dede Dirgahayu

Identification of a tree canopy density information may use remote sensing data such as Landsat-8 imagery. Remote sensing technology such as digital image processing methods could be used to estimate the tree canopy density. The purpose of this research was to compare the results of accuracy of each method for estimating the tree canopy density and determine the best method for mapping the tree canopy density at the site of research. The methods used in the estimation of the tree canopy density are Single band (green, red, and near-infrared band), vegetation indices (NDVI, SAVI, and MSARVI), and Forest Canopy Density (FCD) model. The test results showed that the accuracy of each method: green 73.66%, red 75.63%, near-infrared 75.26%, NDVI 79.42%, SAVI 82.01%, MSARVI 82.65%, and FCD model 81.27%. Comparison of the accuracy results from the seventh methods indicated that MSARVI is the best method to estimate tree canopy density based on Landsat-8 at the site of research. Estimation tree canopy density with MSARVI method showed that the canopy density at the site of research predominantly 60-70% which spread evenly.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Muhammad Attorik Falensky ◽  
Anggieani Laras Sulti ◽  
Ranggas Dhuha Putra ◽  
Kuswantoro Marko

<p><em>Indonesia is one of the owners of the 9th largest forest area in the world. Forest area in Indonesia reaches 884,950 km<sup>2</sup>. Tebo Regency is a regency in Jambi Province which has a wide forest area of 628,003 Ha. However, this forest area has been reduced due to the conversion of functions of Industrial Plantation Forests (HTI), oil palm plantations, and forest clearing activities for both settlements and plantations which led to the phenomenon of forest and land fires (karhutla). This study aims to get a better knowledge of crowns of fire potential locations in forest areas using remote sensing technology. Remote sensing data used in this study is from the satellite imagery </em><em>of </em><em>Landsat 8 OLI - TIRS in 2019. Remote sensing data is used to produce a Forest Canopy Density (FCD) model that can be overlap</em><em>ped with</em><em> a hotspot location, so the crown fire potential locations will be explored in the forest area of Tebo Regency, Jambi Province. Identification of hotspot patterns in Forest Areas was analyzed using spatial analysis. The results of this study are useful for the government as the information of the hotspot area as the cause of fires in the Forest Region of Tebo Regency Jambi Province.</em></p><strong><em>Keywords</em></strong><em>: Spatial Analysis, Forest Cover Density (FCD), Hotspots, Forest Areas, Remote Sensing</em>


2017 ◽  
Vol 63 (No. 3) ◽  
pp. 107-116 ◽  
Author(s):  
Abdollahnejad Azadeh ◽  
Panagiotidis Dimitrios ◽  
Surový Peter

Crown canopy is a significant regulator of forest, affecting microclimate, soil conditions and having an undeniable role in a forest ecosystem. Among the different materials and approaches that have been used for the estimation of crown canopy, satellite based methods are among the most successful methods regarding cost-saving efforts and different kinds of options for measuring the crown canopy. Different types of satellite sensors can result in different outputs due to their various spectral and spatial resolution, even when using the same methodologies. The aim of this review is to assess different remote sensing methods for forest crown canopy density assessment.


2008 ◽  
Vol 32 (5) ◽  
pp. 529-542 ◽  
Author(s):  
Lee Chapman

Over the last decade, a number of applications have been developed which utilize ground-based hemispherical photography. The collection of such imagery can be described as `upside-down' remote sensing as, instead of viewing the Earth from a platform in the sky, techniques are being employed to view the sky from the Earth. This paper reviews the current theory and potential applications of `upside-down' remote sensing across the electromagnetic spectrum. To date, apparatus has been developed to detect various wavelengths between ultraviolet and infrared. Potential applications using these wavelengths are numerous and currently span urban climatology, forest climatology and transportation.


2017 ◽  
Author(s):  
F. Baret ◽  
S. Madec ◽  
K. Irfan ◽  
J. Lopez ◽  
A. Comar ◽  
...  

AbstractLeaf rolling in maize crops is one of the main plant reactions to water stress that may be visually scored in the field. However, the leaf scoring did not reach the high-throughput desired by breeders for efficient phenotyping. This study investigates the relationship between leaf rolling score and the induced canopy structure changes that may be accessed by high-throughput remote sensing techniques.Results gathered over a field phenotyping platform run in 2015 and 2016 show that leaf starts to roll for the water stressed conditions around 9:00 and reaches its maximum around 15:00. Conversely, genotypes conducted under well watered conditions do not show any significant rolling during the same day. Leaf level rolling was very strongly correlated to canopy structure changes as described by the fraction of intercepted radiation fIPARWS derived from digital hemispherical photography. The changes in fIPARWS were stronly correlated (R2=0.86, n=50) to the leaf level rolling visual score. Further, a very good consistency of the genotype ranking of the fIPARWS changes during the day was found (ρ=0.62). This study demonstrating the strong coordination between leaf level rolling and its impact on canopy structure changes poses the basis for new high-throughput remote sensing methods to quantify this water stress trait.HighlighThe diurnal dynamics of leaf rolling scored visually is strongly related to canopy structure changes that can be documented using Digital hemispherical photography. Consequences for high-throughput field phenotyping are discussed


2021 ◽  
Vol 182 ◽  
pp. 106053
Author(s):  
Md Sultan Mahmud ◽  
Azlan Zahid ◽  
Long He ◽  
Daeun Choi ◽  
Grzegorz Krawczyk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document