Cost-Effective Prediction in Medicine and Marketing: Only the Difference Between Bayesian Model Averaging and the Single Best-Fit Model

Author(s):  
Paul Darwen
2010 ◽  
Vol 138 (11) ◽  
pp. 4199-4211 ◽  
Author(s):  
Maurice J. Schmeits ◽  
Kees J. Kok

Abstract Using a 20-yr ECMWF ensemble reforecast dataset of total precipitation and a 20-yr dataset of a dense precipitation observation network in the Netherlands, a comparison is made between the raw ensemble output, Bayesian model averaging (BMA), and extended logistic regression (LR). A previous study indicated that BMA and conventional LR are successful in calibrating multimodel ensemble forecasts of precipitation for a single forecast projection. However, a more elaborate comparison between these methods has not yet been made. This study compares the raw ensemble output, BMA, and extended LR for single-model ensemble reforecasts of precipitation; namely, from the ECMWF ensemble prediction system (EPS). The raw EPS output turns out to be generally well calibrated up to 6 forecast days, if compared to the area-mean 24-h precipitation sum. Surprisingly, BMA is less skillful than the raw EPS output from forecast day 3 onward. This is due to the bias correction in BMA, which applies model output statistics to individual ensemble members. As a result, the spread of the bias-corrected ensemble members is decreased, especially for the longer forecast projections. Here, an additive bias correction is applied instead and the equation for the probability of precipitation in BMA is also changed. These modifications to BMA are referred to as “modified BMA” and lead to a significant improvement in the skill of BMA for the longer projections. If the area-maximum 24-h precipitation sum is used as a predictand, both modified BMA and extended LR improve the raw EPS output significantly for the first 5 forecast days. However, the difference in skill between modified BMA and extended LR does not seem to be statistically significant. Yet, extended LR might be preferred, because incorporating predictors that are different from the predictand is straightforward, in contrast to BMA.


Author(s):  
Lorenzo Bencivelli ◽  
Massimiliano Giuseppe Marcellino ◽  
Gianluca Moretti

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1098
Author(s):  
Ewelina Łukaszyk ◽  
Katarzyna Bień-Barkowska ◽  
Barbara Bień

Identifying factors that affect mortality requires a robust statistical approach. This study’s objective is to assess an optimal set of variables that are independently associated with the mortality risk of 433 older comorbid adults that have been discharged from the geriatric ward. We used both the stepwise backward variable selection and the iterative Bayesian model averaging (BMA) approaches to the Cox proportional hazards models. Potential predictors of the mortality rate were based on a broad range of clinical data; functional and laboratory tests, including geriatric nutritional risk index (GNRI); lymphocyte count; vitamin D, and the age-weighted Charlson comorbidity index. The results of the multivariable analysis identified seven explanatory variables that are independently associated with the length of survival. The mortality rate was higher in males than in females; it increased with the comorbidity level and C-reactive proteins plasma level but was negatively affected by a person’s mobility, GNRI and lymphocyte count, as well as the vitamin D plasma level.


2015 ◽  
Vol 57 (3) ◽  
pp. 485-493 ◽  
Author(s):  
Yutaka Osada ◽  
Takeo Kuriyama ◽  
Masahiko Asada ◽  
Hiroyuki Yokomizo ◽  
Tadashi Miyashita

Sign in / Sign up

Export Citation Format

Share Document