Delay-Sensitive Task Offloading for Internet of Things in Nonorthogonal Multiple Access MEC Networks

Author(s):  
Van Dat Tuong ◽  
Thanh Phung Truong ◽  
Anh-Tien Tran ◽  
Arooj Masood ◽  
Demeke Shumeye Lakew ◽  
...  
Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 880
Author(s):  
Faisal Nadeem ◽  
Mahyar Shirvanimoghaddam ◽  
Yonghui Li ◽  
Branka Vucetic

This paper investigates the two-user uplink non-orthogonal multiple access (NOMA) paired with the hybrid automatic repeat request (HARQ) in the finite blocklength regime, where the target latency of each user is the priority. To limit the packet delivery delay and avoid packet queuing of the users, we propose a novel NOMA-HARQ approach where the retransmission of each packet is served non-orthogonally with the new packet in the same time slot. We use a Markov model (MM) to analyze the dynamics of the uplink NOMA-HARQ with one retransmission and characterize the packet error rate (PER), throughput, and latency performance of each user. We also present numerical optimizations to find the optimal power ratios of each user. Numerical results show that the proposed scheme significantly outperforms the standard NOMA-HARQ in terms of packet delivery delay at the target PER.


2021 ◽  
Vol 25 (1) ◽  
pp. 34-38
Author(s):  
Jonathan Oostvogels ◽  
Fan Yang ◽  
Sam Michiels ◽  
Wouter Joosen ◽  
Danny Hughes

Latency-sensitive applications for the Internet of Things (IoT) often require performance guarantees that contemporary wireless networks fail to offer. Application scenarios involving real-time control of industrial machinery, robotics, or delay-sensitive actuation therefore typically still rely on cables: today's wireless networks cannot deliver messages in a sufficiently small and predictable amount of time. Drop-in wireless replacements for these cabled systems would nevertheless provide great benefit by eliminating the high cost and complexity associated with running cables in harsh industrial environments [1]. The symbolsynchronous bus, introduced in this article and embodied in a platform called Zero-Wire, is a novel wireless networking paradigm that addresses this gap. Using concurrent optical transmissions, it strives to bring low-latency deterministic networking to the wireless IoT.


2021 ◽  
Author(s):  
Farshad Firouzi ◽  
Bahar Farahani ◽  
Ehsan Panahi ◽  
Mojtaba Barzegari

2021 ◽  
Author(s):  
Geng Li ◽  
Huiling Liu ◽  
Gaojian Huang ◽  
Xingwang Li ◽  
Bichu Raj ◽  
...  

Abstract The future sixth generation (6G) is going to face the significant challenges of massive connections and green communication. Recently, reconfigurable intelligent surfaces (RIS) and non-orthogonal multiple access (NOMA) have been proposed as two key technologies to address the above problems. Motivated by this fact, we consider a downlink RIS-aided NOMA system, where the base station seeks to communicate with two NOMA users with the aid of a RIS. Considering future network supporting real-time service, we investigate the system performance with the view of effective capacity (EC), which is an important evaluation metric of sensitive to delay sensitive system. Based on this basis, we derive the analytical expressions of the EC of the near and far users. To obtain more useful insights, we deduce the analytical approximation expressions of the EC in the low signal-to-noise-ratio (SNR) approximation by utilizing Taylor expansion. In order to compare, we provide the results of orthogonal multiple access (OMA). It is found that 1) The number of RIS components and the transmission power of the base station have important effects on the performance of the considered system model. 2) Compared with OMA, NOMA system has higher effective capacity due to the short transmission time.


2021 ◽  
Author(s):  
Huseyin Haci ◽  
Joydev Ghosh

<div>Non-orthogonal multiple access (NOMA) is shown to be the optimal channel access method and a strong candidate to be employed at the fifth generation (5G) and beyond networks. This paper studies direct transmission (DT) and cooperative transmission (CT) modes of operations in NOMA communications and proposes an investigation on evolving a cooperative transmission NOMA (C-NOMA) into a Hybrid transmission NOMA (H-NOMA) that can be used for design and deployment of relay based wireless networks, such as networks for Internet of Things (IoT) applications.</div>


2020 ◽  
Vol 7 (1) ◽  
pp. 773-785 ◽  
Author(s):  
Qiong Wu ◽  
Hanxu Liu ◽  
Ruhai Wang ◽  
Pingyi Fan ◽  
Qiang Fan ◽  
...  

2019 ◽  
Vol 13 (3) ◽  
pp. 553-566 ◽  
Author(s):  
Daosen Zhai ◽  
Ruonan Zhang ◽  
Lin Cai ◽  
F. Richard Yu

Sign in / Sign up

Export Citation Format

Share Document