Time-varying microarray data sets: Co-expression detection

Author(s):  
Sonajharia Minz ◽  
Ibrahim K. A. Abughali
2020 ◽  
Vol 23 (8) ◽  
pp. 805-813
Author(s):  
Ai Jiang ◽  
Peng Xu ◽  
Zhenda Zhao ◽  
Qizhao Tan ◽  
Shang Sun ◽  
...  

Background: Osteoarthritis (OA) is a joint disease that leads to a high disability rate and a low quality of life. With the development of modern molecular biology techniques, some key genes and diagnostic markers have been reported. However, the etiology and pathogenesis of OA are still unknown. Objective: To develop a gene signature in OA. Method: In this study, five microarray data sets were integrated to conduct a comprehensive network and pathway analysis of the biological functions of OA related genes, which can provide valuable information and further explore the etiology and pathogenesis of OA. Results and Discussion: Differential expression analysis identified 180 genes with significantly expressed expression in OA. Functional enrichment analysis showed that the up-regulated genes were associated with rheumatoid arthritis (p < 0.01). Down-regulated genes regulate the biological processes of negative regulation of kinase activity and some signaling pathways such as MAPK signaling pathway (p < 0.001) and IL-17 signaling pathway (p < 0.001). In addition, the OA specific protein-protein interaction (PPI) network was constructed based on the differentially expressed genes. The analysis of network topological attributes showed that differentially upregulated VEGFA, MYC, ATF3 and JUN genes were hub genes of the network, which may influence the occurrence and development of OA through regulating cell cycle or apoptosis, and were potential biomarkers of OA. Finally, the support vector machine (SVM) method was used to establish the diagnosis model of OA, which not only had excellent predictive power in internal and external data sets (AUC > 0.9), but also had high predictive performance in different chip platforms (AUC > 0.9) and also had effective ability in blood samples (AUC > 0.8). Conclusion: The 4-genes diagnostic model may be of great help to the early diagnosis and prediction of OA.


2019 ◽  
Vol 19 (1) ◽  
pp. 3-23
Author(s):  
Aurea Soriano-Vargas ◽  
Bernd Hamann ◽  
Maria Cristina F de Oliveira

We present an integrated interactive framework for the visual analysis of time-varying multivariate data sets. As part of our research, we performed in-depth studies concerning the applicability of visualization techniques to obtain valuable insights. We consolidated the considered analysis and visualization methods in one framework, called TV-MV Analytics. TV-MV Analytics effectively combines visualization and data mining algorithms providing the following capabilities: (1) visual exploration of multivariate data at different temporal scales, and (2) a hierarchical small multiples visualization combined with interactive clustering and multidimensional projection to detect temporal relationships in the data. We demonstrate the value of our framework for specific scenarios, by studying three use cases that were validated and discussed with domain experts.


2015 ◽  
Vol 135 (10) ◽  
pp. 2455-2463 ◽  
Author(s):  
Lanlan Yin ◽  
Sergio G. Coelho ◽  
Julio C. Valencia ◽  
Dominik Ebsen ◽  
Andre Mahns ◽  
...  

Author(s):  
Fang Chu ◽  
Lipo Wang

Accurate diagnosis of cancers is of great importance for doctors to choose a proper treatment. Furthermore, it also plays a key role in the searching for the pathology of cancers and drug discovery. Recently, this problem attracts great attention in the context of microarray technology. Here, we apply radial basis function (RBF) neural networks to this pattern recognition problem. Our experimental results in some well-known microarray data sets indicate that our method can obtain very high accuracy with a small number of genes.


Author(s):  
Jeffrey Sukharev ◽  
Chaoli Wang ◽  
Kwan-Liu Ma ◽  
Andrew T. Wittenberg

2005 ◽  
Vol 03 (02) ◽  
pp. 225-241 ◽  
Author(s):  
JEFF W. CHOU ◽  
RICHARD S. PAULES ◽  
PIERRE R. BUSHEL

Normalization removes or minimizes the biases of systematic variation that exists in experimental data sets. This study presents a systematic variation normalization (SVN) procedure for removing systematic variation in two channel microarray gene expression data. Based on an analysis of how systematic variation contributes to variability in microarray data sets, our normalization procedure includes background subtraction determined from the distribution of pixel intensity values from each data acquisition channel and log conversion, linear or non-linear regression, restoration or transformation, and multiarray normalization. In the case when a non-linear regression is required, an empirical polynomial approximation approach is used. Either the high terminated points or their averaged values in the distributions of the pixel intensity values observed in control channels may be used for rescaling multiarray datasets. These pre-processing steps remove systematic variation in the data attributable to variability in microarray slides, assay-batches, the array process, or experimenters. Biologically meaningful comparisons of gene expression patterns between control and test channels or among multiple arrays are therefore unbiased using normalized but not unnormalized datasets.


2015 ◽  
Vol 76 (1) ◽  
Author(s):  
Ang Jun Chin ◽  
Andri Mirzal ◽  
Habibollah Haron

Gene expression profile is eminent for its broad applications and achievements in disease discovery and analysis, especially in cancer research. Spectral clustering is robust to irrelevant features which are appropriated for gene expression analysis. However, previous works show that performance comparison with other clustering methods is limited and only a few microarray data sets were analyzed in each study. In this study, we demonstrate the use of spectral clustering in identifying cancer types or subtypes from microarray gene expression profiling. Spectral clustering was applied to eleven microarray data sets and its clustering performances were compared with the results in the literature. Based on the result, overall the spectral clustering slightly outperformed the corresponding results in the literature. The spectral clustering can also offer more stable clustering performances as it has smaller standard deviation value. Moreover, out of eleven data sets the spectral clustering outperformed the corresponding methods in the literature for six data sets. So, it can be stated that the spectral clustering is a promising method in identifying the cancer types or subtypes for microarray gene expression data sets.


Sign in / Sign up

Export Citation Format

Share Document