Gravity Disturbance Compensation in Long-Distance High-Precision SINS/ODO Integration of Land Vehicle

Author(s):  
Jiarui Cui ◽  
Maosong Wang ◽  
Wenqi Wu ◽  
Xueyu Du
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4932
Author(s):  
Zhuangsheng Zhu ◽  
Hao Tan ◽  
Yue Jia ◽  
Qifei Xu

The Position and Orientation System (POS) is the core device of high-resolution aerial remote sensing systems, which can obtain the real-time object position and collect target attitude information. The goal of exceeding 0.015°/0.003° of its real-time heading/attitude measurement accuracy is unlikely to be achieved without gravity disturbance compensation. In this paper, a high-precision gravity data architecture for gravity disturbance compensation technology is proposed, and a gravity database with accuracy better than 1 mGal is constructed in the test area. Based on the “Block-Time Variation” Markov Model (B-TV-MM), a gravity disturbance compensation device is developed. The gravity disturbance compensation technology is applied to POS products for the first time, and is applied in the field of aerial remote sensing. Flight test results show that the heading accuracy and attitude accuracy of POS products are improved by at least 6% and 16%, respectively. The device can be used for the gravity disturbance compensation of various inertial technology products.


2019 ◽  
Vol 68 (11) ◽  
pp. 10525-10534 ◽  
Author(s):  
Maosong Wang ◽  
Wenqi Wu ◽  
Xiaofeng He ◽  
You Li ◽  
Xianfei Pan

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ding Chen ◽  
Jiangning Xu ◽  
Yifeng Liang ◽  
Shan Jiang ◽  
Hongyang He

In order to meet the time service needs of high-precision, long-distance, and multinode optical network, this paper proposes a new time synchronization solution, which combines the wavelength division multiplexing (WDM) technology with cascaded taming clock technology. The WDM technology is used for time synchronization between each pair of master-slave nodes. In the system, there are two wavelengths on the fiber link between the master node and the slave node for transmitting signals. 1 plus per second (PPS) signal, time code signal, and 10 MHz signal are, respectively, and successively, sent to the optical fiber link. By solving the one-way delay through analysis of error contribution and link characteristics of the time transmission process, time synchronization of the master-slave nodes pair is achieved. Furthermore, the authors adopt cascaded taming clock technology to ensure accurate time synchronization of each node. A 700 km long-distance time-frequency synchronization system is constructed in the laboratory. The system uses a cesium atomic clock as the reference clock source and transmits the signals through 8 small rubidium atomic clocks (RB clocks) hierarchically. Results from the experiment show that the long-term time stability is 47.5 ps/104 s. The system’s structural characteristics and the experiment results meet the requirements to allow practical use of high-precision time synchronization in networks. This proposed solution can be applied in various civil, commercial, and military fields.


2019 ◽  
Vol 8 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Wenhao Li ◽  
Qisheng Zhang ◽  
Qimao Zhang ◽  
Feng Guo ◽  
Shuaiqing Qiao ◽  
...  

Abstract. The ambiguity of geophysical inversions, which is based on a single geophysical method, is a long-standing problem in geophysical exploration. Therefore, multi-method geophysical prospecting has become a popular topic. In multi-method geophysical prospecting, the joint inversion of seismic and electric data has been extensively researched for decades. However, the methods used for hybrid seismic–electric data acquisition that form the base for multi-method geophysical prospecting techniques have not yet been explored in detail. In this work, we developed a distributed, high-precision, hybrid seismic–electrical data acquisition system using advanced Narrowband Internet of Things (NB-IoT) technology. The system was equipped with a hybrid data acquisition board, a high-performance embedded motherboard based on field-programmable gate array, an advanced RISC machine, and host software. The data acquisition board used an ADS1278 24 bit analog-to-digital converter and FPGA-based digital filtering techniques to perform high-precision data acquisition. The equivalent input noise of the data acquisition board was only 0.5 µV with a sampling rate of 1000 samples per second and front-end gain of 40 dB. The multiple data acquisition stations of our system were synchronized using oven-controlled crystal oscillators and global positioning system technologies. Consequently, the clock frequency error of the system was less than 10−9 Hz at 1 Hz after calibration, and the synchronization accuracy of the data acquisition stations was ±200 ns. The use of sophisticated NB-IoT technologies allowed the long-distance wireless communication between the control center and the data acquisition stations. In validation experiments, it was found that our system was operationally stable and reliable, produced highly accurate data, and it was functionally flexible and convenient. Furthermore, using this system, it is also possible to monitor the real-time quality of data acquisition processes. We believe that the results obtained in this study will drive the advancement of prospective integrated seismic–electrical technologies and promote the use of IoT technologies in geophysical instrumentation.


Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 883 ◽  
Author(s):  
Junbo Tie ◽  
Juliang Cao ◽  
Lubing Chang ◽  
Shaokun Cai ◽  
Meiping Wu ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Junjun Tang ◽  
Peijuan Li

Considering the drawbacks that GPS signal is susceptible to obstacles and TAN becomes useless in some area when without any terrain data or with a featureless terrain field, to realize long-distance and high-precision navigation, a navigation system based on SINS/GPS/TAN/EOAN is presented. When GPS signal is available, GPS is used to correct errors of SINS; when GPS is unavailable, a terrain selection method based on the entropy weighted gray relational decision-making method is use to distinguish terrain into matchable areas and unmatchable areas; then, for the matchable areas, TAN is used to correct errors of SINS, for the unmatchable areas, EOAN is used to correct errors of SINS. The principles of SINS, GPS, TAN, and EOAN are analyzed, the mathematic models of SINS/GPS, SINS/TAN, and SINS/EOAN are constructed, and finally the federated Kalman filter is used to fuse navigation information. Simulation results show that the trajectory of SINS/GPS/TAN/EOAN is close to the ideal one in both matchable area or unmatchable area and whose navigation errors are obviously reduced, which is important for the realization of long-time and high-precision positioning.


Sign in / Sign up

Export Citation Format

Share Document