Fusion of magnetic resonance imaging and ultra-wideband-radar for biomedical applications

Author(s):  
Florian Thiel ◽  
Matthias Hein ◽  
Ulrich Schwarz ◽  
Jurgen Sachs ◽  
Frank Seifert
Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1230
Author(s):  
Vega Lloveras ◽  
José Vidal-Gancedo

The search for new biomedical applications of dendrimers has promoted the synthesis of new radical-based molecules. Specifically, obtaining radical dendrimers has opened the door to their use in various fields such as magnetic resonance imaging, as anti-tumor or antioxidant agents, or the possibility of developing new types of devices based on the paramagnetic properties of organic radicals. Herein, we present a mini review of radical dendrimers based on polyphosphorhydrazone, a new type of macromolecule with which, thanks to their versatility, new metal-free contrast agents are being obtained, among other possible applications.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jin Liu ◽  
Liandong Feng ◽  
Yuzhou Wu

Manganese dioxide (MnO2) nanoparticles (NPs) are highly attractive for biomedical applications due to their biocompatibility, stimuli-responsive magnetic resonance imaging (MRI) properties and capability to modulate the hypoxic tumour microenvironment (TME)....


2018 ◽  
pp. 1424-1447
Author(s):  
Irshad Ahmad Wani

Magnetic nanoparticles due to their unique magnetic phenomenon, are gaining immense interest due to the utilization of these properties for a wide variety of applications in various arena especially in biomedical field. This book chapter, therefore, summarizes the synthesis of various types of magnetic nanoparticles using different approaches depending of their ability to generate either single core of multcore magnetic nanoparticles. The various biomedical applications of magnetic nanoparticles like Magnetic Resonance Imaging (MRI), drug delivery etc. along with possible limitations and challenges for their extended applications in medicine are also discussed.


Author(s):  
Irshad Ahmad Wani

Magnetic nanoparticles due to their unique magnetic phenomenon, are gaining immense interest due to the utilization of these properties for a wide variety of applications in various arena especially in biomedical field. This book chapter, therefore, summarizes the synthesis of various types of magnetic nanoparticles using different approaches depending of their ability to generate either single core of multcore magnetic nanoparticles. The various biomedical applications of magnetic nanoparticles like Magnetic Resonance Imaging (MRI), drug delivery etc. along with possible limitations and challenges for their extended applications in medicine are also discussed.


Sign in / Sign up

Export Citation Format

Share Document