High resolution non-destructive testing in civil engineering by ultra-wideband pseudo-noise approaches

Author(s):  
J. Sachs ◽  
A. Badstubner ◽  
F. Bonitz ◽  
M. Eidner ◽  
M. Helbig ◽  
...  
2013 ◽  
Vol 59 (4) ◽  
pp. 423-439 ◽  
Author(s):  
K.K. Adewole ◽  
S.J. Bull

Abstract The reverse bending and straightening test is conducted on wires used for civil engineering applications to detect laminations which can pose a threat to the integrity of the wires. The FE simulations of the reverse bending and straightening of wires with laminations revealed that the reverse bending and straightening test is only effective in revealing or detecting near-surface laminations with lengths from 25mm located up to 30% of the wire’s thickness and may not be an effective test to detect mid-thickness, near-mid-thickness, and short near-surface laminations with lengths below 15mm. This is because wires with mid-thickness, near-mid-thickness and short nearsurface laminations will pass through the reverse bending and straightening procedures without fracturing and therefore mid-thickness, near-mid-thickness and short near-surface laminations may go undetected. Consequently, other in-line non destructive testing methods might have to be used to detect mid-thickness, near-mid-thickness and short near-surface laminations in the wires.


2020 ◽  
Author(s):  
Giuseppe Casula ◽  
Silvana Fais ◽  
Francesco Cuccuru ◽  
Maria Giovanna Bianchi ◽  
Paola Ligas

<p>A multi-technique high resolution 3D modelling is described here aimed at the investigation of the state of conservation of carbonate columns of the 1000 BC ancient church of Buon Camino located in the homonymous district of the town of Cagliari (Italy).</p><p>The integrated application of different Non-Destructive Testing (NDT) diagnostic methods is of paramount importance to locate damaged parts of the building material of artefacts of historical buildings and to plan their restoration.</p><p>In this study a multi-step procedure was applied starting with a high resolution 3D modelling performed with the aid of Structure from Motion (SfM) Photogrammetry and Terrestrial Laser Scanner (TLS) methodologies. For this delicate task we operated simultaneously a Nikon D-5300 digital Reflex 24.2 Mega pixel Camera and a Leica HDS-6200 Terrestrial Laser Scanner. Subsequently, starting from the information detected with the above methods deeper material diagnostics was performed by means of high resolution 3D ultrasonic tomography aimed at the capillary definition of the elastic properties in the inner parts of the building materials. Measurements of longitudinal wave velocity from ultrasonic data were performed using the transmission method, namely two piezoelectric transducers coupled on the opposite sides of the investigated columns. The ultrasonic data acquisition was planned designing an optimal survey and providing a very good spatial coverage of the investigated columns. The columns were then criss-crossed by a large number of ray paths forming a dense 3D net. The SIRT (Simultaneous Iterative Reconstruction Tomography) algorithm was used to produce the 3D rendering of the velocity distribution inside the investigated columns. With this method the damaged parts were located and it was possible to distinguish them from the unaltered areas. The information on the superficial material conditions obtained by SfM and TLS techniques were compared and integrated with the information of the inner materials obtained by 3D ultrasonic tomography.</p><p>The results of the above non invasive geophysical techniques have been interpreted in the light of the different textural and petrophysical features of the study carbonate building materials. The study of the main textural features, such as the relationship between bioclasts, carbonate matrix, or that of the cement and petrophysical characteristics such as the nature and distribution of porosity were found to be of fundamental importance in the interpretation of the geophysical data (e.g. TLS reflectance and longitudinal acoustic wave propagation). Therefore a detailed analysis of the textures and pore microstructure were carried out from petrographic thin-sections in Optical and Scanning Electron Microscopy (OM/SEM). The final result of our multi-step-technique integrated methodology is a sophisticated 3D model with a high resolution 3D image representing the internal and external parts of the investigated columns in order to account for their static load resistance and possibly plan their conservation and restoration. The described procedure can also be applied to other cases in which a diagnosis is needed of the state of conservation of the variously shaped, layered-stones and composed artefacts typical of ancient historical buildings.</p><p>Key words: 3D Modelling, 3D Ultrasonic Tomography, Terrestrial Laser Scanner, SfM Photogrammetry, Non-Destructive Testing, Diagnostic, Ancient Columns, Stones</p>


Relevance of the problem of the development of technical means (GPR) and algorithms for processing ultra-wideband signals follows from the wide range of possibilities that these means of non-destructive testing and remote sensing provides, together with the potential of modern computing tools and software. Of particular interest in this regard are the results obtained by using various effects associated with a change in the polarization state of both primary (probing) pulses and signals reflected from complex multilayer media to detect defects in them. This is due to the possibility of not only quickly detecting heterogeneities, but also with the relatively low cost of such work. The purpose of the work is a review of various technical means (pulsed georadars) and signal processing methods for detecting various internal inhomogeneities in plane-layered media. These heterogeneities include, in addition to various internal communications elements (cables) and technical elements (drainage pipes), also dangerous externally invisible defects - subsurface cracks and delamination (interruption of contact between the layers). Materials and methods. The paper provides an overview of methods developed by the author, among others, which are designed to solve primarily the practical problems of detecting subsurface inhomogeneities and defects in plane-layered media. The physical basis for the creation of these methods was the result of many years of research by the author related to the analysis of the polarization state of complex (including pulsed) signals scattered by various objects. Results. The basis of the considered results is made up of both scientific articles and patents of Ukraine for inventions and utility models obtained by the author. Conclusions. The review of the results and various methods presented in the article is another confirmation of the wide possibilities offered by new means of remote sensing and non-destructive testing. These tools include not only the devices themselves (elements for obtaining primary data), but also information processing algorithms and software, combined into a single methodology for collecting, processing and subsequent storage of data on the current state of the examined technical and natural objects.


2007 ◽  
Vol 78 (10) ◽  
pp. 103704 ◽  
Author(s):  
U. Hampel ◽  
A. Bieberle ◽  
D. Hoppe ◽  
J. Kronenberg ◽  
E. Schleicher ◽  
...  

2016 ◽  
Vol 16 (2) ◽  
pp. 68-76 ◽  
Author(s):  
Zhen Li ◽  
Zhaozong Meng

AbstractThe purpose of this paper is to review recent research on the applications of existing non-destructive testing (NDT) techniques, especially radio frequency (RF) NDT, for carbon-fibre reinforced plastics (CFRP) composites. Electromagnetic properties of CFRP composites that are associated with RF NDT are discussed first. The anisotropic characteristic of the conductivity and the relationship between the penetration depth and conductivity should be paid much attention. Then, the well-established RF NDT including eddy current technique, microwave technique and RF-based thermography are well categorised into four types (i.e. electromagnetic induction, resonance, RF-based thermography and RF wave propagation) and demonstrated in detail. The example of impact damage detection using the induction and resonance methods is given. Some discussions on the development (like industrial-scale automated scanning, three-dimensional imaging, short-range ultra-wideband (UWB) imaging and the radio frequency identification technology (RFID)-based NDT) are presented.


Sign in / Sign up

Export Citation Format

Share Document