Low-cost, room-size, and highly immersive virtual reality system for virtual and mixed reality applications

Author(s):  
Adrian Borrego ◽  
Jorge Latorre ◽  
Roberto Llorens ◽  
Enrique Noe ◽  
Emily A. Keshner
2018 ◽  
Vol 10 (4) ◽  
pp. 1102 ◽  
Author(s):  
Vicente Román-Ibáñez ◽  
Francisco Pujol-López ◽  
Higinio Mora-Mora ◽  
Maria Pertegal-Felices ◽  
Antonio Jimeno-Morenilla

2015 ◽  
Vol 24 (4) ◽  
pp. 298-321 ◽  
Author(s):  
Ernesto de la Rubia ◽  
Antonio Diaz-Estrella

Virtual reality has become a promising field in recent decades, and its potential now seems clearer than ever. With the development of handheld devices and wireless technologies, interest in virtual reality is also increasing. Therefore, there is an accompanying interest in inertial sensors, which can provide such advantages as small size and low cost. Such sensors can also operate wirelessly and be used in an increasing number of interactive applications. An example related to virtual reality is the ability to move naturally through virtual environments. This is the objective of the real-walking navigation technique, for which a number of advantages have previously been reported in terms of presence, object searching, and collision, among other concerns. In this article, we address the use of foot-mounted inertial sensors to achieve real-walking navigation in a wireless virtual reality system. First, an overall description of the problem is presented. Then, specific difficulties are identified, and a corresponding technique is proposed to overcome each: tracking of foot movements; determination of the user’s position; percentage estimation of the gait cycle, including oscillating movements of the head; stabilization of the velocity of the point of view; and synchronization of head and body yaw angles. Finally, a preliminary evaluation of the system is conducted in which data and comments from participants were collected.


2012 ◽  
Vol 11 (3) ◽  
pp. 9-17 ◽  
Author(s):  
Sébastien Kuntz ◽  
Ján Cíger

A lot of professionals or hobbyists at home would like to create their own immersive virtual reality systems for cheap and taking little space. We offer two examples of such "home-made" systems using the cheapest hardware possible while maintaining a good level of immersion: the first system is based on a projector (VRKit-Wall) and cost around 1000$, while the second system is based on a head-mounted display (VRKit-HMD) and costs between 600� and 1000�. We also propose a standardization of those systems in order to enable simple application sharing. Finally, we describe a method to calibrate the stereoscopy of a NVIDIA 3D Vision system.


2017 ◽  
Vol 79 (7) ◽  
Author(s):  
Kang Hooi-Siang ◽  
Mohamad Kasim Abdul Jalil ◽  
Lee Kee-Quen

Interactive simulation in automotive driving has enhanced the studies of driver behaviors, traffic control, and vehicle dynamics. The development of virtual reality (VR) technology leads to low cost, yet high fidelity, driving simulator become technically feasible. However, a good implementation of high realism and real-time interactive three-dimensional (3D) virtual environment (VE) in an automotive driving simulation are facing many technical challenges such as accessibility, dissimilarity, scalability, and sufficiency. The objective of this paper is to construct a virtual reality system for an automotive driving simulator. The technology with variations of terrain, roadway, buildings, and greenery was studied and developed in the VE of the simulator. Several important technical solutions in the construction of VE for driving simulation had been identified. Finally, the virtual reality system was interactively used in a driver-in-loop simulation for providing direct road elevation inputs to the analysis of vehicle dynamics model (VDM). The results indicated identical matching between the VDM inputs and the VE outputs. The outcomes of this paper lead to a human-in-the-loop foundation of a low-cost automotive driving simulator in the vehicle engineering research. 


Author(s):  
Penny J. Standen ◽  
David J. Brown ◽  
Steven Battersby ◽  
Marion Walker ◽  
Louise Connell ◽  
...  

2018 ◽  
Vol 19 (7) ◽  
pp. 1237-1244 ◽  
Author(s):  
Eun-Su Lim ◽  
Sung-Yi Yun ◽  
Yong-Suk Ko ◽  
Ha-Young Jung ◽  
Hong-Sub Choi

Sign in / Sign up

Export Citation Format

Share Document