Physical Attack Detection for Smart Objects

Author(s):  
Ebu Yusuf Guven ◽  
Ali Yilmaz CAMURCU
Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1247
Author(s):  
Lydia Tsiami ◽  
Christos Makropoulos

Prompt detection of cyber–physical attacks (CPAs) on a water distribution system (WDS) is critical to avoid irreversible damage to the network infrastructure and disruption of water services. However, the complex interdependencies of the water network’s components make CPA detection challenging. To better capture the spatiotemporal dimensions of these interdependencies, we represented the WDS as a mathematical graph and approached the problem by utilizing graph neural networks. We presented an online, one-stage, prediction-based algorithm that implements the temporal graph convolutional network and makes use of the Mahalanobis distance. The algorithm exhibited strong detection performance and was capable of localizing the targeted network components for several benchmark attacks. We suggested that an important property of the proposed algorithm was its explainability, which allowed the extraction of useful information about how the model works and as such it is a step towards the creation of trustworthy AI algorithms for water applications. Additional insights into metrics commonly used to rank algorithm performance were also presented and discussed.


Author(s):  
Chenang Liu ◽  
Chen Kan ◽  
Wenmeng Tian

Abstract Due to its predominant flexibility in fabricating complex geometries, additive manufacturing (AM) has gain increasing popularity in various mission critical applications, such as aerospace, health care, military, and transportation. The layerby-layer manner of AM fabrication significantly expands the vulnerability space of AM cyber-physical systems, leading to potentially altered AM parts with compromised mechanical properties and functionalities. Moreover, internal alterations of the build are very difficult to detect based on traditional geometric dimensioning and tolerancing (GD&T) features. Therefore, how to achieve effective monitoring and attack detection is a very important problem for broader adoption of AM technology. To address this issue, this paper proposes to utilize side channels for process authentication. An online feature extraction approach is developed based on autoencoder to detect unintended process/product alterations caused by cyber-physical attacks. Both supervised and unsupervised monitoring schemes are implemented based on the extracted features. To validate the effectiveness of the proposed method, two real-world case studies are conducted on a fused filament fabrication (FFF) platform equipped with two accelerometers for process monitoring. Two different types of attacks are implemented. The results demonstrate that the proposed method outperforms conventional process monitoring methods, and can effectively detect part geometry and layer thickness alterations in real time.


2019 ◽  
Vol 19 (3) ◽  
pp. 260-269
Author(s):  
Yeongjin Mun ◽  
Hyungseup Kim ◽  
Byeoncheol Lee ◽  
Kwonsang Han ◽  
Jaesung Kim ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaoyang Qu ◽  
Yunchang Dong ◽  
Nan Qu ◽  
Huashun Li ◽  
Mingshi Cui ◽  
...  

In the process of the detection of a false data injection attack (FDIA) in power systems, there are problems of complex data features and low detection accuracy. From the perspective of the correlation and redundancy of the essential characteristics of the attack data, a detection method of the FDIA in smart grids based on cyber-physical genes is proposed. Firstly, the principle and characteristics of the FDIA are analyzed, and the concept of the cyber-physical FDIA gene is defined. Considering the non-functional dependency and nonlinear correlation of cyber-physical data in power systems, the optimal attack gene feature set of the maximum mutual information coefficient is selected. Secondly, an unsupervised pre-training encoder is set to extract the cyber-physical attack gene. Combined with the supervised fine-tuning classifier to train and update the network parameters, the FDIA detection model with stacked autoencoder network is constructed. Finally, a self-adaptive cuckoo search algorithm is designed to optimize the model parameters, and a novel attack detection method is proposed. The analysis of case studies shows that the proposed method can effectively improve the detection accuracy and effect of the FDIA on cyber-physical power systems.


2012 ◽  
Vol 3 (4) ◽  
pp. 86-88
Author(s):  
Ambili M. A Ambili M. A ◽  
◽  
Biju Balakrishnan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document