2020 ◽  
pp. 1-1
Author(s):  
Amal Gunatilake ◽  
Lasitha Piyathilaka ◽  
Antony Tran ◽  
Vinoth Kumar Viswanathan ◽  
Karthick Thiyagarajan ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 62592-62605 ◽  
Author(s):  
Bin Tian ◽  
Kun Mean Hou ◽  
Xunxing Diao ◽  
Hongling Shi ◽  
Haiying Zhou ◽  
...  

2020 ◽  
pp. 146808742091880
Author(s):  
José Manuel Luján ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Varun Pandey

This article proposes a method for fuel minimisation of a Diesel engine with constrained [Formula: see text] emission in actual driving mission. Specifically, the methodology involves three developments: The first is a driving cycle prediction tool which is based on the space-variant transition probability matrix obtained from an actual vehicle speed dataset. Then, a vehicle and an engine model is developed to predict the engine performance depending on the calibration for the estimated driving cycle. Finally, a controller is proposed which adapts the start-of-injection calibration map to fulfil the [Formula: see text] emission constraint while minimising the fuel consumption. The calibration is adapted during a predefined time window based on the predicted engine performance on the estimated cycle and the difference between the actual and the constraint on engine [Formula: see text] emissions. The method assessment was done experimentally in the engine test set-up. The engine performace using the method is compared with the state-of-the-art static calibration method for different [Formula: see text] emission limits on real driving cycles. The online implementation of the method shows that the fuel consumption can be reduced by 3%–4% while staying within the emission limits, indicating that the estimation method is able to capture the main driving cycle characterstics.


2020 ◽  
Vol 7 ◽  
Author(s):  
Samuel R. White ◽  
David A. Megson-Smith ◽  
Kaiqiang Zhang ◽  
Dean T. Connor ◽  
Peter G. Martin ◽  
...  

The use of a robotic arm manipulator as a platform for coincident radiation mapping and laser profiling of radioactive sources on a flat surface is investigated in this work. A combined scanning head, integrating a micro-gamma spectrometer and Time of Flight (ToF) sensor were moved in a raster scan pattern across the surface, autonomously undertaken by the robot arm over a 600 × 260 mm survey area. A series of radioactive sources of different emission intensities were scanned in different configurations to test the accuracy and sensitivity of the system. We demonstrate that in each test configuration the system was able to generate a centimeter accurate 3D model complete with an overlaid radiation map detailing the emitted radiation intensity and the corrected surface dose rate.


1997 ◽  
Vol 30 (20) ◽  
pp. 505-510 ◽  
Author(s):  
Bradley E. Bishop ◽  
Mark W. Spong

Sign in / Sign up

Export Citation Format

Share Document