Productivity and quality control technologies in the US: Some applications in AT&T manufacturing

Author(s):  
A.L. Long ◽  
R.W. Wyndrum
2012 ◽  
Vol 12 (23) ◽  
pp. 11519-11531 ◽  
Author(s):  
C. R. Lonsdale ◽  
R. G. Stevens ◽  
C. A. Brock ◽  
P. A. Makar ◽  
E. M. Knipping ◽  
...  

Abstract. Nucleation in coal-fired power-plant plumes can greatly contribute to particle number concentrations near source regions. The changing emissions rates of SO2 and NOx due to pollution-control technologies over recent decades may have had a significant effect on aerosol formation and growth in the plumes with ultimate implications for climate and human health. We use the System for Atmospheric Modeling (SAM) large-eddy simulation model with the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm to model the nucleation in plumes of coal-fired plants. We test a range of cases with varying emissions to simulate the implementation of emissions-control technologies between 1997 and 2010. We start by simulating the W. A. Parish power plant (near Houston, TX) during this time period, when NOx emissions were reduced by ~90% and SO2 emissions decreased by ~30%. Increases in plume OH (due to the reduced NOx) produced enhanced SO2 oxidation and an order-of-magnitude increase in particle nucleation in the plume despite the reduction in SO2 emissions. These results suggest that NOx emissions could strongly regulate particle nucleation and growth in power-plant plumes. Next, we test a range of cases with varying emissions to simulate the implementation of SO2 and NOx emissions-control technologies. Particle formation generally increases with SO2 emission, while NOx shows two different regimes: increasing particle formation with increasing NOx under low-NOx emissions and decreasing particle formation with increasing NOx under high-NOx emissions. Next, we compare model results with airborne measurements made in the W. A. Parish power-plant plume in 2000 and 2006, confirming the importance of NOx emissions on new particle formation and highlighting the substantial effect of background aerosol loadings on this process (the more polluted background of the 2006 case caused more than an order-of-magnitude reduction in particle formation in the plume compared to the cleaner test day in 2000). Finally, we calculate particle-formation statistics of 330 coal-fired power plants in the US in 1997 and 2010, and the model results show a median decrease of 19% in particle formation rates from 1997 to 2010 (whereas the W. A. Parish case study showed an increase). Thus, the US power plants, on average, show a different result than was found for the W. A. Parish plant specifically, and it shows that the strong NOx controls (90% reduction) implemented at the W. A. Parish plant (with relatively weak SO2 emissions reductions, 30%) are not representative of most power plants in the US during the past 15 yr. These results suggest that there may be important climate implications of power-plant controls due to changes in plume chemistry and microphysics, but the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO2 emissions in each plant. More extensive plume measurements for a range of emissions of SO2 and NOx and in varying background aerosol conditions are needed, however, to better quantify these effects.


Author(s):  
Jon Agley ◽  
Yunyu Xiao ◽  
Rachael Nolan ◽  
Lilian Golzarri-Arroyo

AbstractCrowdsourced psychological and other biobehavioral research using platforms like Amazon’s Mechanical Turk (MTurk) is increasingly common – but has proliferated more rapidly than studies to establish data quality best practices. Thus, this study investigated whether outcome scores for three common screening tools would be significantly different among MTurk workers who were subject to different sets of quality control checks. We conducted a single-stage, randomized controlled trial with equal allocation to each of four study arms: Arm 1 (Control Arm), Arm 2 (Bot/VPN Check), Arm 3 (Truthfulness/Attention Check), and Arm 4 (Stringent Arm – All Checks). Data collection was completed in Qualtrics, to which participants were referred from MTurk. Subjects (n = 1100) were recruited on November 20–21, 2020. Eligible workers were required to claim U.S. residency, have a successful task completion rate > 95%, have completed a minimum of 100 tasks, and have completed a maximum of 10,000 tasks. Participants completed the US-Alcohol Use Disorders Identification Test (USAUDIT), the Patient Health Questionnaire (PHQ-9), and a screener for Generalized Anxiety Disorder (GAD-7). We found that differing quality control approaches significantly, meaningfully, and directionally affected outcome scores on each of the screening tools. Most notably, workers in Arm 1 (Control) reported higher scores than those in Arms 3 and 4 for all tools, and a higher score than workers in Arm 2 for the PHQ-9. These data suggest that the use, or lack thereof, of quality control questions in crowdsourced research may substantively affect findings, as might the types of quality control items.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nick R. Soelberg ◽  
Troy G. Garn ◽  
Mitchell R. Greenhalgh ◽  
Jack D. Law ◽  
Robert Jubin ◽  
...  

The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for85Kr and129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ) and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs), have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.


Author(s):  
Wenjing Guo ◽  
Jeffrey Archer ◽  
Morgan Moore ◽  
Jeffrey Bruce ◽  
Michelle McLain ◽  
...  

Persistent organic pollutants (POPs) cause a significant public and environmental health concern due to their toxicity, long-range transportability, persistence, and bioaccumulation. The US Food and Drug Administration (FDA) has a program to monitor POPs in human and animal foods at ultra-trace levels, using gas chromatography coupled with mass spectrometry (GC–MS). Stringent quality control procedures are practiced within this program, ensuring the reliability and accuracy of these POP results. Due to the complexity of this program’s quality control (QC), the decision-making process for data usability was very time-consuming, upward of three analyst hours for a batch of six extracts. We significantly reduced this time by developing a software kit, written in Python, to evaluate instrument and sample QC, along with data usability. A diverse set of 45 samples were tested using our software, QUICK (Quality and Usability Investigation and Control Kit), that resulted in equivalent results provided by a human reviewer. The software improved the efficiency of the analytical process by reducing the need for user intervention, while simultaneously recognizing a 95% decrease in data reduction time, from 3 hours to 10 minutes.


Author(s):  
A. D. Rao ◽  
G. S. Samuelsen ◽  
Y Yi

Under the sponsorship of the US Department of Energy/National Energy Technology Laboratory, a multidisciplinary team led by the Advanced Power and Energy Programme of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into power plant systems that meet performance and emission goals of the ‘Vision 21’ programme. Earlier tasks of the programme have narrowed down the myriad of fuel processing, power generation, and emission control technologies to selected scenarios that identify those combinations having the potential to achieve the Vision 21 programme goals of high efficiency and minimized environmental impact while using fossil fuels. These analyses have been extended to include coal-based ‘zero-emission’ power plants and H2 coproduction facilities. The technology levels considered are based on projected technical and manufacturing advances being made in industry and on advances identified in current and future government-supported research. Included in these advanced systems are solid oxide fuel cells and advanced-cycle gas turbines. The results of this investigation will serve as a guide for the US Department of Energy in identifying the research areas and technologies that warrant further support.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 933 ◽  
Author(s):  
Rajeshwary Ghosh ◽  
Vishaka Vinod ◽  
J. David Symons ◽  
Sihem Boudina

Cardiovascular disease (CVD) is the number one cause of death in the United States. Advancing age is a primary risk factor for developing CVD. Estimates indicate that 20% of the US population will be ≥65 years old by 2030. Direct expenditures for treating CVD in the older population combined with indirect costs, secondary to lost wages, are predicted to reach $1.1 trillion by 2035. Therefore, there is an eminent need to discover novel therapeutic targets and identify new interventions to delay, lessen the severity, or prevent cardiovascular complications associated with advanced age. Protein and organelle quality control pathways including autophagy/lysosomal and the ubiquitin-proteasome systems, are emerging contributors of age-associated myocardial dysfunction. In general, two findings have sparked this interest. First, strong evidence indicates that cardiac protein degradation pathways are altered in the heart with aging. Second, it is well accepted that damaged and misfolded protein aggregates and dysfunctional mitochondria accumulate in the heart with age. In this review, we will: (i) define the different protein and mitochondria quality control mechanisms in the heart; (ii) provide evidence that each quality control pathway becomes dysfunctional during cardiac aging; and (iii) discuss current advances in targeting these pathways to maintain cardiac function with age.


Sign in / Sign up

Export Citation Format

Share Document