Robust hybrid control schemes for a two-arm robot-performance analysis

Author(s):  
P. Fraisse ◽  
P. Dauchez ◽  
F. Pierrot
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Youjian Zhang ◽  
Wenjun Yan ◽  
Qiang Yang

This paper addresses the synchronization problem for a class of complex networks with time-varying topology as well as nonidentical nodes and coupling time-delay and presents two efficient control schemes to synchronize the network onto any given smooth goal dynamics. The time-varying network is supposed to be bounded within a certain range, which cannot be controlled. Through the adoption of hybrid control with linear static feedback control and adaptive feedback control, two control schemes are derived to guarantee such complex networks to reach the global synchronization. Finally, a set of numerical simulation experiments are carried out and the results demonstrate the effectiveness of the suggested control solutions.


Author(s):  
Xianchao Zhao ◽  
Yang Pan ◽  
Feng Gao

In this paper, a new kind of 6-legged robot for drilling holes on the aircraft surface is presented. Each leg of the robot is a parallel mechanism with 3 degree of freedoms thus the robot includes totally 18 motors. Due to different work status, the control modes of these motors are also different and thus the force-position hybrid control method is applied. The kinematic and dynamic model is briefly introduced. Then the robot gait is discussed. After that hybrid control method is introduced: first the control mode of each motor should be determined, then the position or force control curves should be calculated. In the end of this paper, both virtual and real prototype of this robot is showed and the experiment result showed that the hybrid control method can significantly improve the robot performance.


Robotica ◽  
2014 ◽  
Vol 33 (10) ◽  
pp. 2137-2155 ◽  
Author(s):  
J. G. Daniël Karssen ◽  
Matt Haberland ◽  
Martijn Wisse ◽  
Sangbae Kim

SUMMARYUsing simple running models, researchers have argued that swing-leg retraction can improve running robot performance. In this paper, we investigate whether this holds for a more realistic simulation model validated against a physical running robot. We find that swing-leg retraction can improve stability and disturbance rejection. Alternatively, swing-leg retraction can simultaneously reduce touchdown forces, slipping likelihood, and impact energy losses. Surprisingly, swing-leg retraction barely affected net energetic efficiency. The retraction rates at which these effects are the greatest are strongly model-dependent, suggesting that robot designers cannot always rely on simplified models to accurately predict such complex behaviors.


Sign in / Sign up

Export Citation Format

Share Document