Force Tracking Impedance Control of Robot Manipulators for Environment with Damping

Author(s):  
Seul Jung ◽  
T. C. Hsia
Author(s):  
Oladayo S Ajani ◽  
Samy FM Assal

Recently, people with upper arm disabilities due to neurological disorders, stroke or old age are receiving robotic assistance to perform several activities such as shaving, eating, brushing and drinking. Although the full potential of robotic assistance lies in the use of fully autonomous robotic systems, these systems are limited in design due to the complexities and the associated risks. Hence, rather than the shared controlled or active robotic systems used for such tasks around the head, an adaptive compliance control scheme-based autonomous robotic system for beard shaving assistance is proposed. The system includes an autonomous online face detection and tracking as well as selected geometrical features-based beard region estimation using the Kinect RGB-D camera. Online trajectory planning for achieving the shaving task is enabled; with the capability of online re-planning trajectories in case of unintended head pose movement and occlusion. Based on the dynamics of the UR-10 6-DOF manipulator using ADAMS and MATLAB, an adaptive force tracking impedance controller whose parameters are tuned using Genetic Algorithm (GA) with force/torque constraints is developed. This controller can regulate the contact force under head pose changing and varying shaving region stiffness by adjusting the target stiffness of the controller. Simulation results demonstrate the system capability to achieve beard shaving autonomously with varying environmental parameters that can be extended for achieving other tasks around the head such as feeding, drinking and brushing.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 59
Author(s):  
Junjie Dai ◽  
Chin-Yin Chen ◽  
Renfeng Zhu ◽  
Guilin Yang ◽  
Chongchong Wang ◽  
...  

Installing force-controlled end-effectors on the end of industrial robots has become the mainstream method for robot force control. Additionally, during the polishing process, contact force stability has an important impact on polishing quality. However, due to the difference between the robot structure and the force-controlled end-effector, in the polishing operation, direct force control will have impact during the transition from noncontact to contact between the tool and the workpiece. Although impedance control can solve this problem, industrial robots still produce vibrations with high inertia and low stiffness. Therefore, this research proposes an impedance matching control strategy based on traditional direct force control and impedance control methods to improve this problem. This method’s primary purpose is to avoid force vibration in the contact phase and maintain force–tracking performance during the dynamic tracking phase. Simulation and experimental results show that this method can smoothly track the contact force and reduce vibration compared with traditional force control and impedance control.


Sign in / Sign up

Export Citation Format

Share Document