Chemical vapor deposition of tin oxide films

1975 ◽  
Author(s):  
B.J. Baliga ◽  
S.K. Ghandhi
1994 ◽  
Vol 343 ◽  
Author(s):  
David M. Hoffman ◽  
Lauren M. Atagi ◽  
Wei-Kan Chu ◽  
Jia-Rui Liu ◽  
Zongshuang Zheng ◽  
...  

ABSTRACTDepositions of high quality SiO2 and SnO2 films from the reaction of homoleptic amido precursors M(NMe2)4 (M = Si, Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition reactor. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450 °C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 ± 5 atom °. They are deposited with growth rates from 380 to 900 Å/min. The refractive indexes of the SiO2 films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm−1. X-Ray diffraction studies reveal that the SiO2 film deposited at 350°C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO2 films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10−2 to 10−3 Ω cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350°C is crystalline cassitterite with some (101) orientation.


1989 ◽  
Vol 4 (4) ◽  
pp. 863-872 ◽  
Author(s):  
Frank B. Ellis ◽  
Jim Houghton

Silicon dioxide for use as a diffusion barrier between soda lime glass and fluorine-doped tin oxide is deposited uniformly by atmospheric chemical vapor deposition from silane. oxygen, and nitrogen using a simple single-slot injector head. With a sufficiently thick silicon dioxide layer, the conductivity of the tin oxide is greatly improved by reducing the diffusion of sodium into the tin oxide as it is deposited between about 500 to 600 °C. Based upon the conductivity of thin lightly doped tin oxide films, it appears that at least 250 nm of silicon dioxide deposited on soda lime glass are required to essentially eliminate the diffusion of sodium into the tin oxide. However, only about 10 nm of silicon dioxide are required to obtain almost the full benefit of 250 nm thick films for moderately doped tin oxide films approximately 500 nm thick, The silicon dioxide deposition process is examined between 350 and 580 °C. The activation energy for the deposition is about 27 kJ/mole. Peak and average film deposition rates greater than 50 nm/sec and 10 nm/sec, respectively, may be obtained. The dependence of the film growth rate on the silane, oxygen, and propylene (an inhibitor) concentration is examined. The deposition rate is found to be limited by the rate of gas-phase reactions. Deposition conditions which yield high silane utilization and good film uniformity are discussed. The origin of undesirable by-product powder is studied. At low silane concentration, powder is mainly formed as the gases cool due to condensation from intermediate species.


Sign in / Sign up

Export Citation Format

Share Document