Investigating Mechanical Properties of Interlocking Concrete Blocks by Recycling Waste Polyethylene Terephthalate - A Sustainable Approach

Author(s):  
Kok Kean Heng ◽  
Muhammad Imran Khan ◽  
Muslich Hartadi Sutanto ◽  
Salah E. Zoorob ◽  
Sri Sunarjono
2021 ◽  
Vol 2139 (1) ◽  
pp. 012016
Author(s):  
H Y Jaramillo ◽  
J A Gómez-Camperos ◽  
N Quintero-Quintero

Abstract This study aims to analyze the influence of the incorporation of crushed polyethylene terephthalate as a substitute for fine aggregate in percentages of 10%, 15%, and 20% for the elaboration of concrete blocks. The methodology used is experimental quantitative approach, where the influence of the addition of crushed polyethylene terephthalate as a substitute for fine aggregate for the elaboration of concrete blocks was analyzed to identify the variation in the physical and mechanical properties of samples elaborated under different substitutions and in this way compare with the Colombian standard procedures. The results found in this study indicated that the blocks with the different percentages of polyethylene terephthalate presented a good resistance compared to the block without polyethylene terephthalate, which presented a resistance of 8 MPa. The blocks with polyethylene terephthalate at 10%, 15%, and 20% presented an average resistance of 6.36 MPa, 3.58 MPa, and 4.63 MPa, respectively. Finally, it was analyzed that the blocks with 10% aggregate are waterproof with normal density. In comparison, the blocks with 15% and 20% polyethylene terephthalate have high permeability, with the ability to drain 1 liter of water in 105 s and 38 s, respectively.


2016 ◽  
Vol 51 (3) ◽  
pp. 357-372 ◽  
Author(s):  
Mihaela Cosnita ◽  
Cristina Cazan ◽  
Anca Duta

The paper investigates new composites fully based on wastes of polyethylene terephthalate, rubber, high-density polyethylene, and wood, aiming at multifunctional, environmental-friendly materials, for indoor and outdoor applications. The rubber: polyethylene terephthalate: high-density polyethylene: wood ratio and compression molding temperatures are optimized considering the output mechanical properties, focusing on increasing the waste polyethylene terephthalate content. To investigate the durability in the working conditions, the water-stable composites, with good tensile and compression strengths were exposed to surfactant systems, saline aerosols, and ultraviolet radiations. The results prove that surfactant immersion improves the interfaces and the mechanical properties and a pre-conditioning step involving the dodecyltrimethylammonium bromide surfactant is recommended, prior application. The interfaces and the bulk composites were investigated by X-ray diffraction, Fourier-transform infrared, differential scanning calorimetry, contact angle measurements, scanning electron microscopy, atomic force microscopy, to identify the properties that influence the mechanical behavior and durability. The composites containing 30% of polyethylene terephthalate, obtained at 160℃ and 190℃ have a good combination of mechanical properties and durability that is enhanced by the plasticizing effect of water and surfactants. The compressive strength of the composite processed at 190℃ was 51.2 MPa and the value increased to 58.4 MPa after water immersion. The ultraviolet and saline exposure slightly diminished this effect; however, long time testing (120 h) ended up with values higher than those corresponding to the pristine composite: 55.3 MPa after ultraviolet and 57.1 MPa after saline exposure.


2016 ◽  
Vol 90 ◽  
pp. 188-194 ◽  
Author(s):  
Petr Klímek ◽  
Tomáš Morávek ◽  
Jozef Ráhel ◽  
Monika Stupavská ◽  
David Děcký ◽  
...  

Author(s):  
Zahid Iqbal Khan ◽  
Zurina Binti Mohamad ◽  
Abdul Razak Bin Rahmat ◽  
Unsia Habib ◽  
Nur Amira Sahirah Binti Abdullah

This work explores a novel blend of recycled polyethylene terephthalate/polyamide 11 (rPET/PA11). The blend of rPET/PA11 was introduced to enhance the mechanical properties of rPET at various ratios. The work’s main advantage was to utilize rPET in thermoplastic form for various applications. Three different ratios, i.e. 10, 20 and 30 wt.% of PA11 blend samples, were prepared using a twin-screw extruder and injection moulding machine. The mechanical properties were examined in terms of tensile, flexural and impact strength. The tensile strength of rPET was improved more than 50%, while the increase in tensile strain was observed 42.5% with the addition of 20 wt.% of PA11. The improved properties of the blend were also confirmed by the flexural strength of the blends. The flexural strength was increased from 27.9 MPa to 48 MPa with the addition of 30 wt.% PA11. The flexural strain of rPET was found to be 1.1%. However, with the addition of 10, 20 and 30 wt.% of PA11, the flexural strain was noticed as 1.7, 2.1, and 3.9% respectively. The impact strength of rPET/PA11 at 20 wt.% PA11 was upsurged from 110.53 to 147.12 J/m. Scanning electron microscopy analysis revealed a dispersed PA11 domain in a continuous rPET matrix morphology of the blends. This work practical implication would lead to utilization of rPET in automobile, packaging, and various industries.


Sign in / Sign up

Export Citation Format

Share Document