A Wireless Power Interface for Rechargeable Battery Operated Neural Recording Implants

Author(s):  
Pengfei Li ◽  
Jose C. Principe ◽  
Rizwan Bashirullah
2021 ◽  
Author(s):  
Abinaya.B ◽  
Abirami.A.P ◽  
Divya.J ◽  
Rajalakshmi.R

The vast majority of the modernized implantable devices and Bio-sensors are set inside a patient’s body. To overcome this constraint, in this paper we have designed a rechargeable battery with wireless power transfer technique. The transdermal power transfer for the Pacemaker which is placed inside the heart should be possible by the concept of mutual inductance. The receiver loop ought to be situated inside the body and the transmitter curl ought to be situated outside of the body. The voltage controller will give or manage the necessary yield (output) voltage. The experiments were conducted on wireless charging through pork tissues reveal that from a 3.919-mw power source, 3.072-mw power can be received at 300kHz, reaching a high wireless power transfer efficiency of 78.4%, showing that the charging is very fast. We have also connected a Bluetooth Module to the Atmega328 microcontroller. This Bluetooth technology is used in the Android mobile application to notice the charging levels of the pacemaker. This Inductive power transfer technique takes out the danger of contamination which is brought about by the medical procedure.


2019 ◽  
Author(s):  
Geoffrey Mulberry ◽  
Kevin A. White ◽  
Brian N. Kim

AbstractThe most important organ in the human body is unquestionably the brain. Yet, despite its importance, it is one of the least well understood organs. One reason for this lack of understanding of the brain is the lack of data available to researchers from in vivo studies. Historically, collecting measurements from the brain has been difficult due to the high risk to the patient. Recently technology has been developed to allow electrical measurements to be taken from the brain directly, however most systems involve non-permanent sensors because of the requirement for transcranial wiring for power and data. Developments in the field of CMOS circuit design, wireless power transmission, and wireless data transmission have enabled the creation of implantable neural recording devices as a combination of these technologies. The implant designed in this paper is ∼15 mm in diameter and 2 mm at its thickest point on a flexible polyamide PCB. The flexible nature of the implant allows for the implant to conform to the surface of the brain. The implant requires no transcranial orifice since it is powered wirelessly and transmits data wirelessly via Bluetooth low energy. The CMOS neural amplifier chip on the implant utilizes an enhanced form of delta modulation to remove the requirement for large ADCs to be present on the die, saving space and enabling 1024 amplifiers and electrodes to be present on the chip. The implant is capable of measuring, modulating, and wirelessly transmitting a millivolt order signal to a PC for demodulation and analysis.


Sign in / Sign up

Export Citation Format

Share Document