scholarly journals Support Vector Machines as Multivariate Calibration Model for Prediction of Blood Glucose Concentration Using a New Non-invasive Optical Method Named Pulse Glucometry

Author(s):  
Mitsuhiro Ogawa ◽  
Yasuhiro Yamakoshi ◽  
Makoto Satoh ◽  
Masamichi Nogawa ◽  
Takehiro Yamakoshi ◽  
...  
2004 ◽  
Vol 76 (11) ◽  
pp. 3099-3105 ◽  
Author(s):  
Uwe Thissen ◽  
Bülent Üstün ◽  
Willem J. Melssen ◽  
Lutgarde M. C. Buydens

1993 ◽  
Vol 47 (7) ◽  
pp. 875-881 ◽  
Author(s):  
R. Marbach ◽  
Th. Koschinsky ◽  
F. A. Gries ◽  
H. M. Heise

Near-infrared (NIR) spectra of the human inner lip were obtained by using a special optimized accessory for diffuse reflectance measurements. The partial-least squares (PLS) multivariate calibration algorithm was applied for linear regression of the spectral data between 9000 and 5500 cm−1 (Λ = 1.1–1.8 μm) against blood glucose concentrations determined by a standard clinical enzymatic method. Calibration experiments with a single person were carried out under varying conditions, as well as with a population of 133 different patients, with capillary and venous blood glucose concentration values provided. A genuine correlation between the blood glucose concentrations and the NIR-spectra can be proven. A time lag of about 10 min for the glucose concentration in the spectroscopically probed tissue volume vs. the capillary concentration can be estimated. Mean-square prediction errors obtained by cross-validation were in the range of 45 to 55 mg/dL. An analysis of different variance factors showed that the major contribution to the average prediction uncertainty was due to the reduced measurement reproducibility, i.e., variations in lip position and contact pressure. The results demonstrate the feasibility of using diffuse reflectance NIR-spectroscopy for the noninvasive measurement of blood glucose.


2010 ◽  
Vol 82 (23) ◽  
pp. 9719-9726 ◽  
Author(s):  
Ishan Barman ◽  
Chae-Ryon Kong ◽  
Narahara Chari Dingari ◽  
Ramachandra R. Dasari ◽  
Michael S. Feld

Author(s):  
Zhuyu Wang ◽  
Linhua Zhou ◽  
Tianqing Liu ◽  
Kewei Huan ◽  
Xiaoning Jia

Abstract Extracting micro-scale spectral features from dynamic blood glucose concentrations is extremely difficult when using non-invasive measurement methods. This work proposes a new machine-learning method based on near-infrared spectroscopy, deep belief network (DBN), and support vector machine (SVR), to improve the prediction accuracy. First, the standard oral glucose tolerance test is used to collect near-infrared spectroscopy and actual blood glucose concentration values for specific wavelengths (1200, 1300, 1350, 1450, 1600, 1610, and 1650 nm), and the blood glucose concentrations is within a clinical range of 70mg/dL~220mg/dL. Second, based on the DBN model, high-dimensional deep features of the non-invasive blood glucose spectrum are extracted. These are used to establish a support vector regression (SVR) model and to quantitatively analyze the influence of spectral sample size and corresponding feature dimensions (i.e., DBN network structure) on the prediction accuracy. Finally, based on data from six volunteers, a comparative analysis of the SVR prediction accuracy is performed both before and after using high-dimensional deep features. For volunteer 1, when the DBN-based high-dimensional deep features were used, the root mean square error (RMSE) of support vector regression (SVR) was reduced by 71.67%, the correlation coefficient (R2) and the P value of Clark grid analysis (P) were increased by 13.99% and 6.28%, respectively. Moreover, we have similar results when the proposed method was carried out on the data of other volunteers. The results show that the presented algorithm can play an important role in dynamic non-invasive blood glucose concentration prediction and can effectively improve the accuracy of the SVR model. Further, by applying the algorithm to six independent sets of data, this research also illustrates the high-precision regression and generalization capabilities of the DBN-SVR algorithm.


Sign in / Sign up

Export Citation Format

Share Document