Capacitor regenerative braking system of electric wheelchair for senior citizen based on variable frequency chopper control

Author(s):  
Y. Takahashi ◽  
H. Seki
Author(s):  
Rafael Rivelino da Silva Bravo ◽  
Artur Tozzi C Gama ◽  
Amir Antonio Martins Oliveira ◽  
Victor Juliano De Negri

Author(s):  
Lingying Zhao ◽  
Min Ye ◽  
Xinxin Xu

To address the comfort of an electric vehicle, a coupling mechanism between mechanical friction braking and electric regenerative braking was studied. A cooperative braking system model was established, and comprehensive simulations and system optimizations were carried out. The performance of the cooperative braking system was analyzed. The distribution of the braking force was optimized by an intelligent method, and the distribution of a braking force logic diagram based on comfort was proposed. Using an intelligent algorithm, the braking force was distributed between the two braking systems and between the driving and driven axles. The experiment based on comfort was carried out. The results show that comfort after optimization is improved by 76.29% compared with that before optimization by comparing RMS value in the time domain. The reason is that the braking force distribution strategy based on the optimization takes into account the driver’s braking demand, the maximum braking torque of the motor, and the requirements of vehicle comfort, and makes full use of the braking torque of the motor. The error between simulation results and experimental results is 5.13%, which indicates that the braking force’s distribution strategy is feasible.


2013 ◽  
Author(s):  
Junzhi Zhang ◽  
Chen Lv ◽  
Xiaowei Yue ◽  
Mingzhe Qiu ◽  
Jinfang Gou ◽  
...  

2011 ◽  
Vol 121-126 ◽  
pp. 3406-3410 ◽  
Author(s):  
Yang Yang ◽  
Yang Yang ◽  
Da Tong Qin ◽  
Jin Li

A new kind of pressure coordinated control system suite of regenerative braking system for hybrid electric vehicles (HEV) is proposed in this paper on the basis of appropriate transformation on traditional hydraulic braking system with ABS. AMEsim modular simulation platform is used to build a simulation model of the system. Dynamic performances of the key components and system are simulated and analyzed. And the simulation results show the effectiveness and feasibility of the pressure coordinated control system, which lays the foundation of the design and optimization for the regenerative braking system.


Sign in / Sign up

Export Citation Format

Share Document