Haptic interface protocol for FEM-based deformable model and effects on fineness of force feedback and perceived hardness

Author(s):  
Yoshihiro Kuroda ◽  
Yosuke Okumura ◽  
Kyousuke Kamada ◽  
Masataka Imura ◽  
Osamu Oshiro
2021 ◽  
Author(s):  
Seigo Okada ◽  
Yasunao Okazaki ◽  
Yusuke Kato ◽  
Jun Ozawa ◽  
Takeshi Ando

Author(s):  
Jinling Wang ◽  
Wen F. Lu

Virtual reality technology plays an important role in the fields of product design, computer animation, medical simulation, cloth motion, and many others. Especially with the emergence of haptics technology, virtual simulation system provides an intuitive way of human and computer interaction, which allows user to feel and touch the virtual environment. For a real-time simulation system, a physically based deformable model including complex material properties with a high resolution is required. However, such deformable model hardly satisfies the update rate of interactive haptic rendering that exceeds 1 kHz. To tackle this challenge, a real-time volumetric model with haptic feedback is developed in this paper. This model, named as Adaptive S-chain model, extends the S-chain model and integrates the energy-based wave propagation method by the proposed adaptive re-mesh method to achieve realistic graphic and haptic deformation results. The implemented results show that the nonlinear, heterogeneous, anisotropic, shape retaining material properties and large range deformation are well modeled. An accurate force feedback is generated by the proposed Adaptive S-chain model in case study which is quite close to the experiment data.


Author(s):  
C. Mavroidis ◽  
C. Pfeiffer ◽  
J. Celestino ◽  
Y. Bar-Cohen

Abstract In this project, Rutgers University has teamed with the Jet Propulsion Laboratory (JPL) to pursue the development and demonstration of a novel haptic interfacing capability called MEMICA (remote MEchanical MIrroring using Controlled stiffness and Actuators). MEMICA is intended to provide human operators intuitive and interactive feeling of the stiffness and forces at remote or virtual sites in support of space, medical, underwater, virtual reality, military and field robots performing dexterous manipulation operations. The key aspect of the MEMICA system is a miniature Electrically Controlled Stiffness (ECS) element that mirrors the stiffness at remote/virtual sites. The ECS elements make use of Electro-Rheological Fluid (ERF), which is an Electro-Active Polymer (EAP), to achieve this feeling of stiffness. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user by this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. This paper describes the analytical modeling and experiments that are currently underway to develop an ERF based force feedback element.


Author(s):  
Kristin Potter ◽  
David Johnson ◽  
Elaine Cohen

Reverse engineering of mechanical systems often begins with large datasets produced from laser scanning of physical artifacts. Commonly it is necessary to remove noise and filter them; however, selecting noisy regions and preserving sharp edges on desired features is difficult using standard GUI interfaces. We demonstrate a haptic interface for marking and preserving features in noisy data and for performing local smoothing operations. The force-feedback provides a natural interface for these operations.


Author(s):  
Andrew Erwin ◽  
Fabrizio Sergi ◽  
Vinay Chawda ◽  
Marcia K. O’Malley

This paper investigates the possibility of implementing force-feedback controllers using measurement of interaction force obtained through force-sensing resistors (FSRs), to improve performance of human interacting robots. A custom sensorized handle was developed, with the capability of simultaneously measuring grip force and interaction force during robot-aided rehabilitation therapy. Experiments are performed in order to assess the suitability of FSRs to implement force-feedback interaction controllers. In the force-feedback control condition, the applied force for constant speed motion of a linear 1DOF haptic interface is reduced 6.1 times compared to the uncontrolled condition, thus demonstrating the possibility of improving transparency through force-feedback via FSRs.


2011 ◽  
Vol 199-200 ◽  
pp. 1211-1216 ◽  
Author(s):  
Jian Jun Meng ◽  
Jin Tian Yun

The two-port network theory for describing the characteristics of the haptic interface is presented; the four-channel bilateral control architecture is introduced, and two control methods named position-error-based control and direct force reflection control (PEBC & DFRC) are also presented. Two main problems caused by the coupling between position and force information for transparency improvement of the haptic interface are also be discussed and a Model-Based Force-Position Compensation Strategy to enhance the transparency of the haptic interface is proposed. By embedding the compensation unit into the DFRC architecture, the Haptic Interface could be controlled with precise position and high-fidelity force feedback.


2001 ◽  
Vol 10 (5) ◽  
pp. 465-476 ◽  
Author(s):  
Simon P. DiMaio ◽  
Septimiu E. Salcudean ◽  
Claude Reboulet

An excavator simulator has been developed to facilitate the training of human operators and to evaluate control strategies for heavy-duty hydraulic machines. The operator controls a virtual excavator by means of a joystick while experiencing visual and force feedback generated by environment and machine models. The simulator comprises an impedance model of the excavator arm, a model for the bucket-ground interaction forces, a graphically rendered visual environment, and a haptic interface. This paper describes the simulator components and their integration.


Author(s):  
Mark J. Lelieveld ◽  
Takashi Maeno ◽  
Tetsuo Tomiyama

This research aims to develop a portable haptic master hand with 20 degrees of freedom (DOF). Master hands are used as haptic interfaces in master-slave systems. A master-slave system consists of a haptic interface that communicates with a virtual world or an end-effector for tele-operation, such as a robot hand. The thumb and fingers are usually modeled as a serial linkage mechanism with 4 DOF. So far, no 20 DOF master hands have been developed that can exert perpendicular forces on the finger phalanges during the complete flexion and extension motion. In this paper, the design and development of two concepts of a portable 4 DOF haptic interface for the index finger is presented. Concept A is a statically balanced haptic interface with a rolling-link mechanism (RLM) and an integrated constant torque spring per DOF for perpendicular and active force feedback. Concept B utilizes a mechanical tape brake at the RLM for passive force feedback. The systematic Pahl and Beitz design approach is used as an iterative design method.


1999 ◽  
Author(s):  
Janet M. Weisenberger ◽  
Michael J. Krier ◽  
Martha A. Rinker ◽  
Sandra M. Kreidler

Abstract Differences in the force profile delivered by different types of end-effectors suggest that the choice of end-effector for a haptic interface can have a considerable effect on the perception of the human user. In the present study two different end-effector types were evaluated for two different haptic interfaces. Conventional probe-stylus end-effectors were tested on the PHANToM 3-degree-of-freedom (DOF) force feedback haptic interface and for the Immersion IE2000 2-DOF force feedback joystick. These were compared to thimble-gimbal end-effectors into which the index fingertip is inserted (standard for the PHANToM and specially constructed for the IE2000). In a task in which subjects were asked to judge the orientation of virtual sinusoidal gratings, no significant differences in performance were observed. Results are discussed in terms of tasks in which the differential cues delivered by different end-effectors might influence performance.


Sign in / Sign up

Export Citation Format

Share Document