Haptically Guided Filtering for Reverse Engineering

Author(s):  
Kristin Potter ◽  
David Johnson ◽  
Elaine Cohen

Reverse engineering of mechanical systems often begins with large datasets produced from laser scanning of physical artifacts. Commonly it is necessary to remove noise and filter them; however, selecting noisy regions and preserving sharp edges on desired features is difficult using standard GUI interfaces. We demonstrate a haptic interface for marking and preserving features in noisy data and for performing local smoothing operations. The force-feedback provides a natural interface for these operations.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4008
Author(s):  
Błażej Doroszuk ◽  
Robert Król ◽  
Jarosław Wajs

This paper addresses the problem of conveyor transfer station design in harsh operating conditions, aiming to identify and eliminate a failure phenomenon which interrupts aggregate supply. The analyzed transfer station is located in a Polish granite quarry. The study employs laser scanning and reverse engineering methods to map the existing transfer station and its geometry. Next, a discrete element method (DEM) model of granite aggregate has been created and used for simulating current operating conditions. The arch formation has been identified as the main reason for breakdowns. Alternative design solutions for transfer stations were tested in DEM simulations. The most uncomplicated design for manufacturing incorporated an impact plate, and a straight chute has been selected as the best solution. The study also involved identifying areas of the new station most exposed to wear phenomena. A new transfer point was implemented in the quarry and resolved the problem of blockages.


Author(s):  
C. J. Rolls ◽  
W. ElMaraghy ◽  
H. ElMaraghy

Abstract Reverse engineering (RE), may be defined as the process of generating computer aided design models (CAD) from existing or prototype parts. The process has been used for many years in industry. It has markedly increased in implementation in the past few years, primarily due to the introduction of rapid part digitization technologies. Current industrial applications include CAD model construction from artisan geometry, such as in automotive body styling, the generation of custom fits to human surfaces, and quality control. This paper summarizes the principles of operation behind many commercially available part digitization technologies, and discusses techniques involved in part digitization using a coordinate measuring machine (CMM) and laser scanner. An overall error characterization of the laser scanning digitization process is presented for a particular scanner. This is followed by a discussion of the merits and considerations involved in generating combined data sets with characteristics indicative of the design intent of specific part features. Issues in facilitating the assembly, or registration, of the different types of data into a single point set are discussed.


2021 ◽  
Author(s):  
Seigo Okada ◽  
Yasunao Okazaki ◽  
Yusuke Kato ◽  
Jun Ozawa ◽  
Takeshi Ando

Author(s):  
C. Mavroidis ◽  
C. Pfeiffer ◽  
J. Celestino ◽  
Y. Bar-Cohen

Abstract In this project, Rutgers University has teamed with the Jet Propulsion Laboratory (JPL) to pursue the development and demonstration of a novel haptic interfacing capability called MEMICA (remote MEchanical MIrroring using Controlled stiffness and Actuators). MEMICA is intended to provide human operators intuitive and interactive feeling of the stiffness and forces at remote or virtual sites in support of space, medical, underwater, virtual reality, military and field robots performing dexterous manipulation operations. The key aspect of the MEMICA system is a miniature Electrically Controlled Stiffness (ECS) element that mirrors the stiffness at remote/virtual sites. The ECS elements make use of Electro-Rheological Fluid (ERF), which is an Electro-Active Polymer (EAP), to achieve this feeling of stiffness. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user by this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. This paper describes the analytical modeling and experiments that are currently underway to develop an ERF based force feedback element.


Volume 3 ◽  
2004 ◽  
Author(s):  
Chia-Lung Chang ◽  
Yen-Hung Chen

The external geometry of the fillet weld plays an important role in the strength of the weld. Two factors that influence the external geometry of the fillet weld are weld size and profile. The fillet weld must be made to the weld size and profile as specified in the welding code. Unacceptable profile not only is a defect of the weld but also produces stress risers that reduce the fatigue strength. Insufficient weld that reduces the cross sectional area of weld throat may cause premature failure. Visual inspection and weld gages are two most widely used simple tools to provide a rapid assessment of the external geometry of the fillet weld. In this study, the reverse engineering technique, which a laser scanning system integrates with CAD software, is used to provide a more accurate measurement of the weld contour. The weld samples were made of low-carbon steel plates with T-joint using CO2 welding. The weld volume, weld size and convexity were determined from CAD model to evaluate the weld quality. The reverse engineering technique provides a more accurate and efficient method to inspect the external geometry of fillet weld.


Author(s):  
Andrew Erwin ◽  
Fabrizio Sergi ◽  
Vinay Chawda ◽  
Marcia K. O’Malley

This paper investigates the possibility of implementing force-feedback controllers using measurement of interaction force obtained through force-sensing resistors (FSRs), to improve performance of human interacting robots. A custom sensorized handle was developed, with the capability of simultaneously measuring grip force and interaction force during robot-aided rehabilitation therapy. Experiments are performed in order to assess the suitability of FSRs to implement force-feedback interaction controllers. In the force-feedback control condition, the applied force for constant speed motion of a linear 1DOF haptic interface is reduced 6.1 times compared to the uncontrolled condition, thus demonstrating the possibility of improving transparency through force-feedback via FSRs.


Sign in / Sign up

Export Citation Format

Share Document