Unsettled Topics Concerning the Impact of Quantum Technologies on Automotive Cybersecurity

2020 ◽  
Author(s):  
Joachim Taiber ◽  

Quantum computing is considered the “next big thing” when it comes to solving computational problems impossible to tackle using conventional computers. However, a major concern is that quantum computers could be used to crack current cryptographic schemes designed to withstand traditional cyberattacks. This threat also impacts future automated vehicles as they become embedded in a vehicle-to-everything (V2X) ecosystem. In this scenario, encrypted data is transmitted between a complex network of cloud-based data servers, vehicle-based data servers, and vehicle sensors and controllers. While the vehicle hardware ages, the software enabling V2X interactions will be updated multiple times. It is essential to make the V2X ecosystem quantum-safe through use of “post-quantum cryptography” as well other applicable quantum technologies. This SAE EDGE™ Research Report considers the following three areas to be unsettled questions in the V2X ecosystem: How soon will quantum computing pose a threat to connected and automated vehicle technologies? What steps and measures are needed to make a V2X ecosystem “quantum-safe?” What standardization is needed to ensure that quantum technologies do not pose an unacceptable risk from an automotive cybersecurity perspective?

2021 ◽  
Vol 7 (1) ◽  
pp. 1-9
Author(s):  
Zion Elani

Quantum computing, a fancy word resting on equally fancy fundamentals in quantum mechanics, has become a media hype, a mainstream topic in popular culture and an eye candy for high-tech company researchers and investors alike. Quantum computing has the power to provide faster, more efficient, secure and accurate computing solutions for emerging future innovations. Governments the world over, in collaboration with high-tech companies, pour in billions of dollars for the advancement of computing solutions quantum-based and for the development of fully functioning quantum computers that may one day aid in or even replace classical computers. Despite much hype and publicity, most people do not understand what quantum computing is, nor do they comprehend the significance of the developments required in this field, and the impact it may have on the future. Through these lecture notes, we embark on a pedagogic journey of understanding quantum computing, gradually revealing the concepts that form its basis, later diving in a vast pool of future possibilities that lie ahead, concluding with understanding and acknowledging some major hindrance and speed breaking bumpers in their path.


Author(s):  
Lance Fortnow

This chapter examines the power of quantum computing, as well as the related concepts of quantum cryptography and teleportation. In 1982, the Nobel prize-winning physicist Richard Feynman noticed there was no simple way of simulating quantum physical systems using digital computers. He turned this problem into an opportunity—perhaps a computational device based on quantum mechanics could solve problems more efficiently than more traditional computers. In the decades that followed, computer scientists and physicists, often working together, showed in theory that quantum computers can solve certain problems, such as factoring numbers, much faster. Whether one can actually build large or even medium-scale working quantum computers and determine exactly what these computers can or cannot do still remain significant challenges.


Author(s):  
Amandeep Singh Bhatia ◽  
Shenggen Zheng

In the last two decades, the field of post-quantum cryptography has had an overwhelming response among research communities. The ability of quantum computers to factorize large numbers could break many of well-known RSA cryptosystem and discrete log-based cryptosystem. Thus, post-quantum cryptography offers secure alternatives which are implemented on classical computers and is secure against attacks by quantum computers. The significant benefits of post-quantum cryptosystems are that they can be executed quickly and efficiently on desktops, smartphones, and the Internet of Things (IoTs) after some minor software updates. The main objective of this chapter is to give an outline of major developments in privacy protectors to reply to the forthcoming threats caused by quantum systems. In this chapter, we have presented crucial classes of cryptographic systems to resist attacks by classical and quantum computers. Furthermore, a review of different classes of quantum cloning is presented.


It is assumed that certain mathematical or computational problems which are used in traditional cryptographic schemes are hard to solve for an attacker using today’s computers. But, lots of companies are trying to build quantum computer and in coming few years commercial quantum computer will be in reality. Security of traditional asymmetric cryptographic algorithms can be broken using quantum computers. So, researchers all over the world are planning for transition to post-quantum cryptography. One solution is to build hybrid solution combining both traditional and post-quantum primitives which will provide traditional cryptographic guarantees as well as quantum resistance [1].The best and feasible hybrid solution can be used in the protocols like SSL/TLS, SSH and PGP.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sergey E. Yunakovsky ◽  
Maxim Kot ◽  
Nikolay Pozhar ◽  
Denis Nabokov ◽  
Mikhail Kudinov ◽  
...  

AbstractQuantum computing technologies pose a significant threat to the currently employed public-key cryptography protocols. In this paper, we discuss the impact of the quantum threat on public key infrastructures (PKIs), which are used as a part of security systems for protecting production environments. We analyze security issues of existing models with a focus on requirements for a fast transition to post-quantum solutions. Although our primary focus is on the attacks with quantum computing, we also discuss some security issues that are not directly related to the used cryptographic algorithms but are essential for the overall security of the PKI. We attempt to provide a set of security recommendations regarding the PKI from the viewpoints of attacks with quantum computers.


Author(s):  
Amandeep Singh Bhatia ◽  
Shenggen Zheng

In the last two decades, the field of post-quantum cryptography has had an overwhelming response among research communities. The ability of quantum computers to factorize large numbers could break many of well-known RSA cryptosystem and discrete log-based cryptosystem. Thus, post-quantum cryptography offers secure alternatives which are implemented on classical computers and is secure against attacks by quantum computers. The significant benefits of post-quantum cryptosystems are that they can be executed quickly and efficiently on desktops, smartphones, and the Internet of Things (IoTs) after some minor software updates. The main objective of this chapter is to give an outline of major developments in privacy protectors to reply to the forthcoming threats caused by quantum systems. In this chapter, we have presented crucial classes of cryptographic systems to resist attacks by classical and quantum computers. Furthermore, a review of different classes of quantum cloning is presented.


Author(s):  
Chithralekha Balamurugan ◽  
Kalpana Singh ◽  
Ganeshvani Ganesan ◽  
Muttukrishnan Rajarajan

Cryptography has been used from time immemorial for preserving the confidentiality of data/information in storage or in transit. Thus, cryptography research has also been evolving from the classical Caesar cipher to the modern cryptosystems based on modular arithmetic to the contemporary cryptosystems based on quantum computing. The emergence of quantum computing imposes a major threat on the modern cryptosystems based on modular arithmetic whereby, even the computationally hard problems which constitute for the strength of the modular arithmetic ciphers could be solved in deterministic time. This threat triggered post-quantum cryptography research in order to design and develop post-quantum algorithms that can withstand quantum computing attacks. This paper provides a review of the various post-quantum cryptography and, in specific, code-based cryptography research dimensions. The research directions that are yet to be explored in code-based cryptography research is another key contribution of this paper.


Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 38
Author(s):  
Chithralekha Balamurugan ◽  
Kalpana Singh ◽  
Ganeshvani Ganesan ◽  
Muttukrishnan Rajarajan

Cryptography has been used from time immemorial for preserving the confidentiality of data/information in storage or transit. Thus, cryptography research has also been evolving from the classical Caesar cipher to the modern cryptosystems, based on modular arithmetic to the contemporary cryptosystems based on quantum computing. The emergence of quantum computing poses a major threat to the modern cryptosystems based on modular arithmetic, whereby even the computationally hard problems which constitute the strength of the modular arithmetic ciphers could be solved in polynomial time. This threat triggered post-quantum cryptography research to design and develop post-quantum algorithms that can withstand quantum computing attacks. This paper provides an overview of the various research directions that have been explored in post-quantum cryptography and, specifically, the various code-based cryptography research dimensions that have been explored. Some potential research directions that are yet to be explored in code-based cryptography research from the perspective of codes is a key contribution of this paper.


Sign in / Sign up

Export Citation Format

Share Document