Optimal Control of Domestic Storage via MPC: the Impact of the Prediction of User Habits, including Power Market and Battery Degradation

Author(s):  
Matteo Manganelli ◽  
Vishal Undre ◽  
Alessandro Soldati
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 750
Author(s):  
Sherzod N. Tashpulatov

We model day-ahead electricity prices of the UK power market using skew generalized error distribution. This distribution allows us to take into account the features of asymmetry, heavy tails, and a peak higher than in normal or Student’s t distributions. The adequacy of the estimated volatility model is verified using various tests and criteria. A correctly specified volatility model can be used for analyzing the impact of reforms or other events. We find that, after the start of the COVID-19 pandemic, price level and volatility increased.


2021 ◽  
Vol 19 (2) ◽  
pp. 1677-1695
Author(s):  
Boli Xie ◽  
◽  
Maoxing Liu ◽  
Lei Zhang

<abstract><p>In order to study the impact of limited medical resources and population heterogeneity on disease transmission, a SEIR model based on a complex network with saturation processing function is proposed. This paper first proved that a backward bifurcation occurs under certain conditions, which means that $ R_{0} &lt; 1 $ is not enough to eradicate this disease from the population. However, if the direction is positive, we find that within a certain parameter range, there may be multiple equilibrium points near $ R_{0} = 1 $. Secondly, the influence of population heterogeneity on virus transmission is analyzed, and the optimal control theory is used to further study the time-varying control of the disease. Finally, numerical simulations verify the stability of the system and the effectiveness of the optimal control strategy.</p></abstract>


2016 ◽  
Vol 09 (03) ◽  
pp. 1650038 ◽  
Author(s):  
Aida Mojaver ◽  
Hossein Kheiri

In this paper, we deal with the problem of optimal control of a deterministic model of hepatitis C virus (HCV). In the first part of our analysis, a mathematical modeling of HCV dynamics which can be controlled by antiretroviral therapy as fixed controls has been presented and analyzed which incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. Basic reproduction number is calculated and the existence and stability of equilibria are investigated. In the second part, the optimal control problem representing drug treatment strategies of the model is explored considering control parameters as time-dependent in order to minimize not only the population of infected cells but also the associated costs. At the end of the paper, the impact of combination of the strategies in the control of HCV and their effectiveness are compared by numerical simulation.


2020 ◽  
Vol 7 (4) ◽  
pp. 181843 ◽  
Author(s):  
Thomas Rawson ◽  
Kym E. Wilkins ◽  
Michael B. Bonsall

Dengue is a debilitating and devastating viral infection spread by mosquito vectors, and over half the world’s population currently live at risk of dengue (and other flavivirus) infections. Here, we use an integrated epidemiological and vector ecology framework to predict optimal approaches for tackling dengue. Our aim is to investigate how vector control and/or vaccination strategies can be best combined and implemented for dengue disease control on small networks, and whether these optimal strategies differ under different circumstances. We show that a combination of vaccination programmes and the release of genetically modified self-limiting mosquitoes (comparable to sterile insect approaches) is always considered the most beneficial strategy for reducing the number of infected individuals, owing to both methods having differing impacts on the underlying disease dynamics. Additionally, depending on the impact of human movement on the disease dynamics, the optimal way to combat the spread of dengue is to focus prevention efforts on large population centres. Using mathematical frameworks, such as optimal control, are essential in developing predictive management and mitigation strategies for dengue disease control.


2017 ◽  
Vol 33 (2) ◽  
pp. 346-358 ◽  
Author(s):  
Amanda Prorok ◽  
M. Ani Hsieh ◽  
Vijay Kumar

Author(s):  
Tanvi ◽  
Rajiv Aggarwal

In this paper, a nonlinear population model for HIV-TB co-infection has been proposed. The model is incorporated with the effect of early and late initiation of HIV treatment in co-infectives already on TB treatment, on the occurrence of Immune Reconstitution Inflammatory syndrome (IRIS). A 15-dimensional (15D) mathematical model has been developed in this study. We begin with considering constant treatment rates and thereafter, proceed to time-dependent treatment rates for co-infectives as control parameters. The basic reproduction number, a threshold quantity, corresponding to each HIV and TB sub-model has been computed in case of constant controls. With constant values of control parameters, mathematical analysis shows the existence and local stability of the disease-free equilibrium point and the endemic equilibrium point for the model. Together with time-dependent parameters, an optimal control problem is introduced and solved using Pontryagin’s maximum principle with an objective to minimize the number of infectives and disease induced deaths along with the cost of treatment. Numerical simulations are performed to examine the effect of reproduction numbers on control profiles and to identify, the ideal combination of treatment strategies which provides minimum burden on a society. Numerical results imply that if both HIV and TB are endemic in the population, then in order to bring in minimum burden from the co-infection, optimal control efforts must be enforced rather than constant treatment rate.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Aristide G. Lambura ◽  
Gasper G. Mwanga ◽  
Livingstone Luboobi ◽  
Dmitry Kuznetsov

A deterministic mathematical model for the transmission and control of cointeraction of helminths and tuberculosis is presented, to examine the impact of helminth on tuberculosis and the effect of control strategies. The equilibrium point is established, and the effective reproduction number is computed. The disease-free equilibrium point is confirmed to be asymptotically stable whenever the effective reproduction number is less than the unit. The analysis of the effective reproduction number indicates that an increase in the helminth cases increases the tuberculosis cases, suggesting that the control of helminth infection has a positive impact on controlling the dynamics of tuberculosis. The possibility of bifurcation is investigated using the Center Manifold Theorem. Sensitivity analysis is performed to determine the effect of every parameter on the spread of the two diseases. The model is extended to incorporate control measures, and Pontryagin’s Maximum Principle is applied to derive the necessary conditions for optimal control. The optimal control problem is solved numerically by the iterative scheme by considering vaccination of infants for Mtb, treatment of individuals with active tuberculosis, mass drug administration with regular antihelminthic drugs, and sanitation control strategies. The results show that a combination of educational campaign, treatment of individuals with active tuberculosis, mass drug administration, and sanitation is the most effective strategy to control helminth-Mtb coinfection. Thus, to effectively control the helminth-Mtb coinfection, we suggest to public health stakeholders to apply intervention strategies that are aimed at controlling helminth infection and the combination of vaccination of infants and treatment of individuals with active tuberculosis.


2011 ◽  
Vol 31 (45) ◽  
pp. 16185-16193 ◽  
Author(s):  
M. Saglam ◽  
N. Lehnen ◽  
S. Glasauer

Sign in / Sign up

Export Citation Format

Share Document