An industrial optimum current control scheme for IM drive fed by Ultra Sparse Z-source Matrix Converter under abnormal input voltage

Author(s):  
S. Sina Sebtahmadi ◽  
H. Borhan A ◽  
S. Mekhilef
Author(s):  
Peethala Rajiv Roy ◽  
P. Parthiban ◽  
B. Chitti Babu

Abstract This paper deals with implementation of a single-phase three level converter system under low voltage condition. The frequency of the switches is made constant and involves change in ${t_{on}}$ and ${t_{off}}$ duration. For this condition the pulse width modulation control scheme for a single phase three level rectifier is developed to improve the power quality. The hysteresis current control technique is adopted to bring forth three-level PWM on the dc side of the bridge rectifier and to achieve high power factor and low harmonic distortion. Based on the proposed control scheme, the line current is driven to follow the sinusoidal current command which is in phase with the supply voltage. By using three-level voltage pattern the blocking voltage of each power device is clamped to half of the dc link voltage. The simulation and experimental results of 20W converter under low input voltage condition are shown to verify the circuit performance. Open loop simulation and hardware tests are implemented by applying a low voltage of 15 V(rms) on the input side.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 278 ◽  
Author(s):  
Jiang You ◽  
Weiyan Fan ◽  
Lijun Yu ◽  
Bin Fu ◽  
Mengyan Liao

Since it has strong ability to realize a conversion to adapt to a wide variation of input voltage, the double-switch buck-boost (DSBB) converter is usually employed as a front-end converter in two-stage power converter systems, where conversion efficiency is always highly valued. Because there is only one switch in the Pulse Width Modulation (PWM) state in the buck or boost work mode, the combined control scheme was investigated for its advantages in inductor average current and conversion efficiency. However, in this method, the operation mode should be determined by additional logic according to the change of input voltage. Moreover, different control systems should be designed for different operation modes to guarantee dynamic control performance and smooth transition between different work modes. To address these issues, the linear active disturbance rejection control (LADRC) method is introduced to develop an inner current control loop in this paper. In this method, the model deviations in different work modes are considered as a generalized disturbance, and a unified current control plant can be derived for current controller design. Furthermore, the duty cycle limitations in practice are considered, an additional mode for transitional operation is produced, and the corresponding control scheme is also developed. Simulation and experimental test results are provided to validate the correctness and effectiveness of the proposed control scheme.


2018 ◽  
Vol 33 (2) ◽  
pp. 1666-1681 ◽  
Author(s):  
S. Sina Sebtahmadi ◽  
Hanieh Borhan Azad ◽  
S. Hr. Aghay Kaboli ◽  
Md. Didarul Islam ◽  
Saad Mekhilef

2013 ◽  
Vol 706-708 ◽  
pp. 716-719
Author(s):  
Jian Chu ◽  
Gang Wang

This paper mainly introduced to the PLC as the core of stainless steel composite plate electric control part of the design. The system uses the converter +PLC+ man-machine interface, as the major part of roll welding machine control, because of the use of the PLC, so that the system can improve the automatic level, electrical components is reduced, reduce failure rate, improve the reliability of equipment operation. Based on the current control and speed control, so that the welding quality and welding speed has been greatly improved. In the article, mainly from the production process, and the control system hardware and software design, and the control scheme to introduce several aspects.


Sign in / Sign up

Export Citation Format

Share Document