Design of Electric Control System of Stainless Steel Composite Plate

2013 ◽  
Vol 706-708 ◽  
pp. 716-719
Author(s):  
Jian Chu ◽  
Gang Wang

This paper mainly introduced to the PLC as the core of stainless steel composite plate electric control part of the design. The system uses the converter +PLC+ man-machine interface, as the major part of roll welding machine control, because of the use of the PLC, so that the system can improve the automatic level, electrical components is reduced, reduce failure rate, improve the reliability of equipment operation. Based on the current control and speed control, so that the welding quality and welding speed has been greatly improved. In the article, mainly from the production process, and the control system hardware and software design, and the control scheme to introduce several aspects.

2013 ◽  
Vol 401-403 ◽  
pp. 804-808
Author(s):  
Lin Lin Yuan ◽  
Jing Tao Han ◽  
Jing Liu ◽  
Yan Long Liu

High boron alloyed stainless steel composite plates with different Ti content by cladding casting and hot forming process were fabricated. The mechanical properties of composite plates were analyzed after solution treatment. The results show that the composite plate has optimal microstructure and properties at 1100°C solution temperature, holding for 4h.The comprehensive properties of the composite plates are improved with the increase of Ti content, but excess Ti content can lower the plasticity. The elongation and the tensile strength of composite plate reaches 29% and 527MPa respectively, the mechanical properties can meet and exceed the supply standard requirements in ASTM A887-89 of U.S. when the reasonable content of Titanium is about 5%.


2019 ◽  
Vol 6 (10) ◽  
pp. 106575
Author(s):  
Bin Wang ◽  
Ming-Yan Jiang ◽  
Ming Xu ◽  
Cheng-Wu Cui ◽  
Jie Wang ◽  
...  

2013 ◽  
Vol 457-458 ◽  
pp. 1381-1385 ◽  
Author(s):  
Sheng Yong Lei

Automatic production line includes machinery, electric, control, communication and other multi-disciplinary technologies and knowledge. It is an ideal training platform for students majored in mechatronics and electric automation. In the designing of platform, however, the difficulty lies in the precise delivery and position control of linear guide rail system. To address this problem, this paper aims at designing an AC servo-control system based on PLC, AC servo driver, servo motor and human-machine interface (HMI) and elaborates the principle of servo-control system, circuit design and software design. The system will achieve reliable delivery and precise positioning with position error less than 1 mm, which, with great application value, will meet the actual demand from industrial production.


2011 ◽  
Vol 5 (6) ◽  
pp. 832-841 ◽  
Author(s):  
Toshiharu Tanaka ◽  
◽  
Jiro Otsuka ◽  
Ikuro Masuda ◽  
Yasuaki Aoyama ◽  
...  

We have developed an ultra-precision positioning device that has the following characteristics: 1) The 210 mm strokes stage is driven by a new type of linear motor called “Tunnel Actuator (TA).” 2) The stage has very rigid structure so as not to cause vibration and to achieve high resolution for its feed-back system. 3) The stage is supported by linear ball guideways that have nonlinear spring behavior in the small stroke range. 4) Much attention has been paid to the time lag of the electric control system in the PID control using a linear encoder of 0.034 nm resolution for the feed-back system. The electric control system compensates for the disturbance of induced electromotive voltage that is generated in proportion to the stage velocity. We have studied how the equivalent time constant T of the control system affects the stage displacement deviation Δx when the command of stage displacement xr is kept at zero. The following results have been obtained: 1)With a decrease in time constant T of the current control system, the change in the motor current Io becomes smaller, and, at the same time, the change in stage deviation Δx becomes smaller. 2) At the smallest time constant T of the current system, a displacement resolution of 0.2 nm has been obtained under the nonlinear spring behavior of linear ball guideways. 3) There is a possibility of obtaining a displacement resolution of less than 0.1 nm with a further decrease in T.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 565-571
Author(s):  
Yajun Luo ◽  
Fengfan Yang ◽  
Linwei Ji ◽  
Yahong Zhang ◽  
Minglong Xu ◽  
...  

An active vibration control scheme was proposed based on Macro Fiber Composite (MFC) actuators for the bending and torsional vibration control of large flexible lightweight wing structures. Firstly, a finite element modeling and modal analysis of a flexible wing are carried out. Further, the number, type, and location distribution of the MFC actuators bonded on the supported beam of the wing are designed. Then, the actuated characteristics of the two kinds of MFC actuators required for bending and torsional vibration controls was theoretically analyzed. The simulation model of the overall vibration control system was also finally obtained. Finally, through ANSYS simulation analysis, the vibration control effect of the current control system on the first two-order low-frequency modal response of the wing structure is given. The simulation results show that the proposed active vibration control scheme has specific feasibility and effectiveness.


2014 ◽  
Vol 635-637 ◽  
pp. 1266-1270 ◽  
Author(s):  
Yan Jin ◽  
Hui Lin

The paper analyzes the precision coaxial processing requirements and the characteristics of high automatic online compensation, and builds the electric control system based on Delta series products. The system uses a bus controller and absolute encoders servo constitute nearly closed-loop servo control system, combined with torque limiting grading feeding, dressing real-time compensation, stable and high-speed precision machining ceramic ferrule.


Sign in / Sign up

Export Citation Format

Share Document