Correction of land-cover area estimates from low spatial resolution remotely sensed data

Author(s):  
A. Moody
2020 ◽  
Vol 12 (14) ◽  
pp. 2291 ◽  
Author(s):  
Darius Phiri ◽  
Matamyo Simwanda ◽  
Serajis Salekin ◽  
Vincent R. Nyirenda ◽  
Yuji Murayama ◽  
...  

The advancement in satellite remote sensing technology has revolutionised the approaches to monitoring the Earth’s surface. The development of the Copernicus Programme by the European Space Agency (ESA) and the European Union (EU) has contributed to the effective monitoring of the Earth’s surface by producing the Sentinel-2 multispectral products. Sentinel-2 satellites are the second constellation of the ESA Sentinel missions and carry onboard multispectral scanners. The primary objective of the Sentinel-2 mission is to provide high resolution satellite data for land cover/use monitoring, climate change and disaster monitoring, as well as complementing the other satellite missions such as Landsat. Since the launch of Sentinel-2 multispectral instruments in 2015, there have been many studies on land cover/use classification which use Sentinel-2 images. However, no review studies have been dedicated to the application of ESA Sentinel-2 land cover/use monitoring. Therefore, this review focuses on two aspects: (1) assessing the contribution of ESA Sentinel-2 to land cover/use classification, and (2) exploring the performance of Sentinel-2 data in different applications (e.g., forest, urban area and natural hazard monitoring). The present review shows that Sentinel-2 has a positive impact on land cover/use monitoring, specifically in monitoring of crop, forests, urban areas, and water resources. The contemporary high adoption and application of Sentinel-2 can be attributed to the higher spatial resolution (10 m) than other medium spatial resolution images, the high temporal resolution of 5 days and the availability of the red-edge bands with multiple applications. The ability to integrate Sentinel-2 data with other remotely sensed data, as part of data analysis, improves the overall accuracy (OA) when working with Sentinel-2 images. The free access policy drives the increasing use of Sentinel-2 data, especially in developing countries where financial resources for the acquisition of remotely sensed data are limited. The literature also shows that the use of Sentinel-2 data produces high accuracies (>80%) with machine-learning classifiers such as support vector machine (SVM) and Random forest (RF). However, other classifiers such as maximum likelihood analysis are also common. Although Sentinel-2 offers many opportunities for land cover/use classification, there are challenges which include mismatching with Landsat OLI-8 data, a lack of thermal bands, and the differences in spatial resolution among the bands of Sentinel-2. Sentinel-2 data show promise and have the potential to contribute significantly towards land cover/use monitoring.


2020 ◽  
Vol 12 (18) ◽  
pp. 2907
Author(s):  
Xiaozhi Yu ◽  
Dengsheng Lu ◽  
Xiandie Jiang ◽  
Guiying Li ◽  
Yaoliang Chen ◽  
...  

Many studies have investigated the effects of spectral and spatial features of remotely sensed data and topographic characteristics on land-cover and forest classification results, but they are mainly based on individual sensor data. How these features from different kinds of remotely sensed data with various spatial resolutions influence classification results is unclear. We conducted a comprehensively comparative analysis of spectral and spatial features from ZiYuan-3 (ZY-3), Sentinel-2, and Landsat and their fused datasets with spatial resolution ranges from 2 m, 6 m, 10 m, 15 m, and to 30 m, and topographic factors in influencing land-cover classification results in a subtropical forest ecosystem using random forest approach. The results indicated that the combined spectral (fused data based on ZY-3 and Sentinel-2), spatial, and topographical data with 2-m spatial resolution provided the highest overall classification accuracy of 83.5% for 11 land-cover classes, as well as the highest accuracies for almost all individual classes. The improvement of spectral bands from 4 to 10 through fusion of ZY-3 and Sentinel-2 data increased overall accuracy by 14.2% at 2-m spatial resolution, and by 11.1% at 6-m spatial resolution. Textures from high spatial resolution imagery play more important roles than textures from medium spatial resolution images. The incorporation of textural images into spectral data in the 2-m spatial resolution imagery improved overall accuracy by 6.0–7.7% compared to 1.1–1.7% in the 10-m to 30-m spatial resolution images. Incorporation of topographic factors into spectral and textural imagery further improved overall accuracy by 1.2–5.5%. The classification accuracies for coniferous forest, eucalyptus, other broadleaf forests, and bamboo forest can be 85.3–91.1%. This research provides new insights for using proper combinations of spectral bands and textures corresponding to specifically spatial resolution images in improving land-cover and forest classifications in subtropical regions.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Sabelo Nick Dlamini ◽  
Jonas Franke ◽  
Penelope Vounatsou

Many entomological studies have analyzed remotely sensed data to assess the relationship between malaria vector distribution and the associated environmental factors. However, the high cost of remotely sensed products with high spatial resolution has often resulted in analyses being conducted at coarse scales using open-source, archived remotely sensed data. In the present study, spatial prediction of potential breeding sites based on multi-scale remotely sensed information in conjunction with entomological data with special reference to presence or absence of larvae was realized. Selected water bodies were tested for mosquito larvae using the larva scooping method, and the results were compared with data on land cover, rainfall, land surface temperature (LST) and altitude presented with high spatial resolution. To assess which environmental factors best predict larval presence or absence, Decision Tree methodology and logistic regression techniques were applied. Both approaches showed that some environmental predictors can reliably distinguish between the two alternatives (existence and non-existence of larvae). For example, the results suggest that larvae are mainly present in very small water pools related to human activities, such as subsistence farming that were also found to be the major determinant for vector breeding. Rainfall, LST and altitude, on the other hand, were less useful as a basis for mapping the distribution of breeding sites. In conclusion, we found that models linking presence of larvae with high-resolution land use have good predictive ability of identifying potential breeding sites.


2014 ◽  
pp. 269-283 ◽  
Author(s):  
Mohamed S. Dafalla ◽  
Elfatih M. Abdel-Rahman ◽  
Khalid H. A. Siddig ◽  
Ibrahim S. Ibrahim ◽  
Elmar Csaplovics

Author(s):  
Ned Horning ◽  
Julie A. Robinson ◽  
Eleanor J. Sterling ◽  
Woody Turner ◽  
Sacha Spector

In terrestrial biomes, ecologists and conservation biologists commonly need to understand vegetation characteristics such as structure, primary productivity, and spatial distribution and extent. Fortunately, there are a number of airborne and satellite sensors capable of providing data from which you can derive this information. We will begin this chapter with a discussion on mapping land cover and land use. This is followed by text on monitoring changes in land cover and concludes with a section on vegetation characteristics and how we can measure these using remotely sensed data. We provide a detailed example to illustrate the process of creating a land cover map from remotely sensed data to make management decisions for a protected area. This section provides an overview of land cover classification using remotely sensed data. We will describe different options for conducting land cover classification, including types of imagery, methods and algorithms, and classification schemes. Land cover mapping is not as difficult as it may appear, but you will need to make several decisions, choices, and compromises regarding image selection and analysis methods. Although it is beyond the scope of this chapter to provide details for all situations, after reading it you will be able to better assess your own needs and requirements. You will also learn the steps to carry out a land cover classification project while gaining an appreciation for the image classification process. That said, if you lack experience with land cover mapping, it always wise to seek appropriate training and, if possible, collaborate with someone who has land cover mapping experience (Section 2.3). Although the terms “land cover” and “land use” are sometimes used interchangeably they are different in important ways. Simply put, land cover is what covers the surface of the Earth and land use describes how people use the land (or water). Examples of land cover classes are: water, snow, grassland, deciduous forest, or bare soil.


Sign in / Sign up

Export Citation Format

Share Document