Characterization of Satellite-derived Cloud Products for Application in an Aircraft Icing Prediction System

Author(s):  
J. Haggerty ◽  
S. Landolt ◽  
C. Wolff ◽  
J. Simard ◽  
B. Bernstein ◽  
...  
Aerospace ◽  
2019 ◽  
Vol 6 (6) ◽  
pp. 67 ◽  
Author(s):  
Xingliang Jiang ◽  
Yangyang Wang

In order to solve the accidents caused by aircraft icing, electro-impulse de-icing technology was studied through numerical simulation and experimental verification. In addition, this paper analyzed in detail the influence of the number, placement arrangement, and starting time of pulse coils on the de-icing effect, which plays a guidance role in the design and installation of the subsequent electro-impulse de-icing system. In an artificial climate chamber, the new de-icing criteria were obtained by tensile test, and the platform for the electro-impulse de-icing system was built. Replacing the skin with an aluminum plate, an electro-impulse de-icing system with a single coil was used. A three-dimensional skin-ice layer model was established by using Solidworks software. The finite element method was adapted. Through comparison between the de-icing prediction results and the test results in the natural environment, it was proven that the calculation process of de-icing prediction was correct, which laid a theoretical foundation for the selection of the number, placement arrangement, and starting time of the pulse coils. Finally, in this paper, by choosing the leading edge of NACA0012 wing as the research object, the influence of the number, placement arrangement, and starting time of pulse coils on the de-icing effect was analyzed. The results show that to get a better de-icing effect, the electro-impulse de-icing system with two impulse coils should be selected. The two coils were installed in the central position of the top and bottom surfaces of the leading edge, respectively. In addition, one of the impulse coils started working 1200 μs later than the other one.


2012 ◽  
Vol 51 (2) ◽  
pp. 265-284 ◽  
Author(s):  
Stewart G. Cober ◽  
George A. Isaac

AbstractObservations of aircraft icing environments that included supercooled large drops (SLD) greater than 100 μm in diameter have been analyzed. The observations were collected by instrumented research aircraft from 134 flights during six field programs in three different geographic regions of North America. The research aircraft were specifically instrumented to accurately measure the microphysics characteristics of SLD conditions. In total 2444 SLD icing environments were observed at 3-km resolution. Each observation had an average liquid water content (LWC) > 0.005 g m−3, drops > 100 μm in diameter, ice crystal concentrations <1 L−1, and an average static temperature ≤0°C. SLD conditions were observed approximately 5% of the in-flight time. The SLD observations were segregated into four subsets, which included conditions with maximum drop sizes <500 μm and >500 μm in diameter, each with median drop volume diameters <40 μm and >40 μm. For each SLD subset, the observations were used to develop envelopes of maximum LWC values as a function of horizontal extent and temperature. In addition, characteristic drop size distributions were developed for each SLD subset. The maximum LWC values physically represent either the 99% or 99.9% LWC values, as determined from an extreme value analysis of the data. The analysis is sufficient for simulation of SLD environments with either numerical icing accretion models or wind-tunnel icing simulations. The SLD envelopes are similar in structure and supplemental to existing aircraft icing envelopes, the difference being that the existing envelopes did not explicitly incorporate SLD conditions.


2019 ◽  
Vol 28 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Sergio Fernández-González ◽  
Mariano Sastre ◽  
Francisco Valero ◽  
Andrés Merino ◽  
Eduardo García-Ortega ◽  
...  

2000 ◽  
Vol 8 (9) ◽  
pp. 985-1001 ◽  
Author(s):  
J.W. Melody ◽  
T. Başar ◽  
W.R. Perkins ◽  
P.G. Voulgaris

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Sign in / Sign up

Export Citation Format

Share Document