Landslide analysis through the multi-sensor SBAS-DInSAR approach: The case study of Assisi, Central Italy

Author(s):  
F. Calo ◽  
F. Ardizzone ◽  
R. Castaldo ◽  
P. Lollino ◽  
P. Tizzani ◽  
...  
Keyword(s):  
Food Control ◽  
2021 ◽  
Vol 125 ◽  
pp. 107964
Author(s):  
Daniele Castiglione ◽  
Lisa Guardone ◽  
Francesca Susini ◽  
Federica Alimonti ◽  
Valeria Paternoster ◽  
...  

2018 ◽  
Vol 763 ◽  
pp. 1067-1076 ◽  
Author(s):  
Luigi di Sarno ◽  
Fabrizio Paolacci ◽  
Anastasios G. Sextos

Numerous existing steel framed buildings located in earthquake prone regions world-wide were designed without seismic provisions. Slender beam-columns, as well as non-ductile beam-to-column connections have been employed for multi-storey moment-resisting frames (MRFs) built before the 80’s. Thus, widespread damage due to brittle failure has been commonly observed in the past earthquakes for steel MRFs. A recent post-earthquake survey carried out in the aftermath of the 2016-2017 Central Italy seismic swarm has pointed out that steel structures may survive the shaking caused by several main-shocks and strong aftershocks without collapsing. Inevitably, significant lateral deformations are experienced, and, in turn, non-structural components are severely damaged thus inhibiting the use of the steel building structures. The present papers illustrates the outcomes of a recent preliminary numerical study carried out for the case of a steel MRF building located in Amatrice, Central Italy, which experienced a series of ground motion excitations suffering significant damage to the masonry infills without collapsing. A refined numerical model of the sample structure has been developed on the basis of the data collected on site. Given the lack of design drawings, the structure has been re-designed in compliance with the Italian regulations imposed at the time of construction employing the allowable stress method. The earthquake performance of the case study MRF has been then investigated through advanced nonlinear dynamic analyses and its structural performance has been evaluated according to Eurocode 8-Part 3 for existing buildings. The reliability of the codified approaches has been evaluated and possible improvements emphasized.


2016 ◽  
Vol 22 (1) ◽  
pp. 37-52 ◽  
Author(s):  
GIULIA FANELLI ◽  
DIANA SALCIARINI ◽  
CLAUDIO TAMAGNINI
Keyword(s):  

2016 ◽  
Vol 59 ◽  
Author(s):  
Arrigo Caserta ◽  
Fawzi Doumaz ◽  
Antonio Costanzo ◽  
Anna Gervasi ◽  
William Thorossian ◽  
...  

<p><em>We used the moderate-magnitude aftershocks succeeding to the 2016 August 24<sup>th</sup>, Mw = 6.0, Amatrice (Italy) mainshok to asses, specially during an ongoing seismic sequence, the soil-structure interaction where cultural Heritage is involved. We have chosen as case study the</em><em> San Giovanni Battista</em><em> church (A.D. 1039)  in Acquasanta Terme town, about 20 Km northeast of Amatrice. First of all we studied the soil shaking features in order to characterize the input to the monument. Then, using the recordings in the church, we tried to figure out  how the input seismic energy is distributed over the different monument parts. Some preliminary results are shown and discussed.</em></p><p><em><br /></em></p>


2021 ◽  
pp. 106023
Author(s):  
Lianchao LUO ◽  
Enrico CAPEZZUOLI ◽  
Orlando VASELLI ◽  
Huaguo WEN ◽  
Marta LAZZARONI ◽  
...  

Recycling ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 25
Author(s):  
Alessio Quintili ◽  
Beatrice Castellani

Municipal solid waste collection and transport are functional activities in waste management, with a significant energy and carbon footprint and a significant effect on the urban environment. An issue related to municipal solid waste collection and transport is their regional and municipal implementation, affected by sorting and recycling strategies at local level. An efficient collection is necessary to optimize the whole recycling process. The present paper shows the results of an energy, environmental, and economic evaluation of a case study, analyzing the fleet used for municipal solid waste collection and transport in 10 municipalities in Central Italy. The current scenario was compared with alternative scenarios on the basis of some parameters for performance evaluation: vehicles’ energy consumption, carbon footprint, routes, and costs. Results show that for passenger cars, the alternative scenario based on an entire fleet of dual compressed natural gas (CNG) vehicles led to a reduction of the CO2 emissions (−2675 kgCO2eq) in the analyzed period (January–August 2019) and a reduction of the energy consumption (−1.96 MJ km−1). An entire fleet of CNG vehicles led to an increase of CO2 emissions: +0.02 kgCO2eqkgwaste−1 (+110%) for compactors (35–75 q) and +0.09 kgCO2eqkgwaste−1 (+377%) for compactors (80–180 q). Moreover, both categories report a higher fuel consumption and specific energy consumption. For waste transport high-capacity vehicles, we propose the installation of a Stop-Start System, which leads to environmental and energy benefits (a saving of 38,332 kgCO2eq and 8.8 × 10−7 MJ km−1kgwaste−1). On three-wheeler vehicles, the installation of the Stop-Start System is completely disadvantageous.


2020 ◽  
Vol 272 ◽  
pp. 105647 ◽  
Author(s):  
Giuseppe Brando ◽  
Alessandro Pagliaroli ◽  
Giulia Cocco ◽  
Francesco Di Buccio

2020 ◽  
Vol 45 ◽  
pp. 914-921 ◽  
Author(s):  
Paolo Ventura ◽  
Michele Zazzi ◽  
Silvia Rossetti ◽  
Martina Carra

Sign in / Sign up

Export Citation Format

Share Document