Feature extraction and tracking for large-scale geospatial data

Author(s):  
Lina Yu ◽  
Feiyu Zhu ◽  
Hongfeng Yu ◽  
Jun Wang ◽  
Kwo-Sen Kuo
2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


Author(s):  
Luke Gallagher ◽  
Antonio Mallia ◽  
J. Shane Culpepper ◽  
Torsten Suel ◽  
B. Barla Cambazoglu

2018 ◽  
Vol 66 (8) ◽  
pp. 1967-1981 ◽  
Author(s):  
Fatemeh Sheikholeslami ◽  
Dimitris Berberidis ◽  
Georgios B. Giannakis

Content-Based Image Retrieval (CBIR) is extensively used technique for image retrieval from large image databases. However, users are not satisfied with the conventional image retrieval techniques. In addition, the advent of web development and transmission networks, the number of images available to users continues to increase. Therefore, a permanent and considerable digital image production in many areas takes place. Quick access to the similar images of a given query image from this extensive collection of images pose great challenges and require proficient techniques. From query by image to retrieval of relevant images, CBIR has key phases such as feature extraction, similarity measurement, and retrieval of relevant images. However, extracting the features of the images is one of the important steps. Recently Convolutional Neural Network (CNN) shows good results in the field of computer vision due to the ability of feature extraction from the images. Alex Net is a classical Deep CNN for image feature extraction. We have modified the Alex Net Architecture with a few changes and proposed a novel framework to improve its ability for feature extraction and for similarity measurement. The proposal approach optimizes Alex Net in the aspect of pooling layer. In particular, average pooling is replaced by max-avg pooling and the non-linear activation function Maxout is used after every Convolution layer for better feature extraction. This paper introduces CNN for features extraction from images in CBIR system and also presents Euclidean distance along with the Comprehensive Values for better results. The proposed framework goes beyond image retrieval, including the large-scale database. The performance of the proposed work is evaluated using precision. The proposed work show better results than existing works.


Author(s):  
Yaxing Wei ◽  
Liping Di ◽  
Guangxuan Liao ◽  
Baohua Zhao ◽  
Aijun Chen ◽  
...  

With the rapid accumulation of geospatial data and the advancement of geoscience, there is a critical requirement for an infrastructure that can integrate large-scale, heterogeneous, and distributed storage systems for the sharing of geospatial data within multiple user communities. This article probes into the feasibility to share distributed geospatial data through Grid computing technology by introducing several major issues (including system heterogeneity, uniform mechanism to publish and discover geospatial data, performance, and security) to be faced by geospatial data sharing and how Grid technology can help to solve these issues. Some recent research efforts, such as ESG and the Data Grid system in GMU CSISS, have proven that Grid technology provides a large-scale infrastructure which can seamlessly integrate dispersed geospatial data together and provide uniform and efficient ways to access the data.


2020 ◽  
Vol 12 (20) ◽  
pp. 3430
Author(s):  
Wei Wang ◽  
Alim Samat ◽  
Yongxiao Ge ◽  
Long Ma ◽  
Abula Tuheti ◽  
...  

A lack of long-term soil wind erosion data impedes sustainable land management in developing regions, especially in Central Asia (CA). Compared with large-scale field measurements, wind erosion modeling based on geospatial data is an efficient and effective method for quantitative soil wind erosion mapping. However, conventional local-based wind erosion modeling is time-consuming and labor-intensive, especially when processing large amounts of geospatial data. To address this issue, we developed a Google Earth Engine-based Revised Wind Erosion Equation (RWEQ) model, named GEE-RWEQ, to delineate the Soil Wind Erosion Potential (SWEP). Based on the GEE-RWEQ model, terabytes of Remote Sensing (RS) data, climate assimilation data, and some other geospatial data were applied to produce monthly SWEP with a high spatial resolution (500 m) across CA between 2000 and 2019. The results show that the mean SWEP is in good agreement with the ground observation-based dust storm index (DSI), satellite-based Aerosol Optical Depth (AOD), and Absorbing Aerosol Index (AAI), confirming that GEE-RWEQ is a robust wind erosion prediction model. Wind speed factors primarily determined the wind erosion in CA (r = 0.7, p < 0.001), and the SWEP has significantly increased since 2011 because of the reversal of global terrestrial stilling in recent years. The Aral Sea Dry Lakebed (ASDLB), formed by shrinkage of the Aral Sea, is the most severe wind erosion area in CA (47.29 kg/m2/y). Temporally, the wind erosion dominated by wind speed has the largest spatial extent of wind erosion in Spring (MAM). Meanwhile, affected by the spatial difference of the snowmelt period in CA, the wind erosion hazard center moved from the southwest (Karakum Desert) to the middle of CA (Kyzylkum Desert and Muyunkum Desert) during spring. According to the impacts of land cover change on the spatial dynamic of wind erosion, the SWEP of bareland was the highest, while that of forestland was the lowest.


2020 ◽  
Vol 10 (7) ◽  
pp. 2474
Author(s):  
Honglie Wang ◽  
Shouqian Sun ◽  
Lunan Zhou ◽  
Lilin Guo ◽  
Xin Min ◽  
...  

Vehicle re-identification is attracting an increasing amount of attention in intelligent transportation and is widely used in public security. In comparison to person re-identification, vehicle re-identification is more challenging because vehicles with different IDs are generated by a unified pipeline and cannot only be distinguished based on the subtle differences in their features such as lights, ornaments, and decorations. In this paper, we propose a local feature-aware Siamese matching model for vehicle re-identification. A local feature-aware Siamese matching model focuses on the informative parts in an image and these are the parts most likely to differ among vehicles with different IDs. In addition, we utilize Siamese feature matching to better supervise our attention. Furthermore, a perspective transformer network, which can eliminate image deformation, has been designed for feature extraction. We have conducted extensive experiments on three large-scale vehicle re-ID datasets, i.e., VeRi-776, VehicleID, and PKU-VD, and the results show that our method is superior to the state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document