Improvements in VIIRS reflective band calibration accuracy and stability provided by RSBAutoCal

Author(s):  
Evan Haas ◽  
Frank J. De Luccia
2021 ◽  
Vol 15 (04) ◽  
Author(s):  
Fangfang Yu ◽  
Xiangqian Wu ◽  
Hyelim Yoo ◽  
Haifeng Qian ◽  
Xi Shao ◽  
...  

Author(s):  
N. Skou ◽  
S.N. Madsen ◽  
E.L. Christensen ◽  
A. Netterstrom ◽  
K. Woolders

2020 ◽  
Vol 66 (4) ◽  
pp. 773-793 ◽  
Author(s):  
Arman Shojaei ◽  
Alexander Hermann ◽  
Pablo Seleson ◽  
Christian J. Cyron

Abstract Diffusion-type problems in (nearly) unbounded domains play important roles in various fields of fluid dynamics, biology, and materials science. The aim of this paper is to construct accurate absorbing boundary conditions (ABCs) suitable for classical (local) as well as nonlocal peridynamic (PD) diffusion models. The main focus of the present study is on the PD diffusion formulation. The majority of the PD diffusion models proposed so far are applied to bounded domains only. In this study, we propose an effective way to handle unbounded domains both with PD and classical diffusion models. For the former, we employ a meshfree discretization, whereas for the latter the finite element method (FEM) is employed. The proposed ABCs are time-dependent and Dirichlet-type, making the approach easy to implement in the available models. The performance of the approach, in terms of accuracy and stability, is illustrated by numerical examples in 1D, 2D, and 3D.


2020 ◽  
pp. 1-12
Author(s):  
Zheping Yan ◽  
Jinzhong Zhang ◽  
Jialing Tang

The accuracy and stability of relative pose estimation of an autonomous underwater vehicle (AUV) and a target depend on whether the characteristics of the underwater image can be accurately and quickly extracted. In this paper, a whale optimization algorithm (WOA) based on lateral inhibition (LI) is proposed to solve the image matching and vision-guided AUV docking problem. The proposed method is named the LI-WOA. The WOA is motivated by the behavior of humpback whales, and it mainly imitates encircling prey, bubble-net attacking and searching for prey to obtain the globally optimal solution in the search space. The WOA not only balances exploration and exploitation but also has a faster convergence speed, higher calculation accuracy and stronger robustness than other approaches. The lateral inhibition mechanism can effectively perform image enhancement and image edge extraction to improve the accuracy and stability of image matching. The LI-WOA combines the optimization efficiency of the WOA and the matching accuracy of the LI mechanism to improve convergence accuracy and the correct matching rate. To verify its effectiveness and feasibility, the WOA is compared with other algorithms by maximizing the similarity between the original image and the template image. The experimental results show that the LI-WOA has a better average value, a higher correct rate, less execution time and stronger robustness than other algorithms. The LI-WOA is an effective and stable method for solving the image matching and vision-guided AUV docking problem.


2021 ◽  
pp. 1-12
Author(s):  
Heming Jia ◽  
Chunbo Lang

Salp swarm algorithm (SSA) is a meta-heuristic algorithm proposed in recent years, which shows certain advantages in solving some optimization tasks. However, with the increasing difficulty of solving the problem (e.g. multi-modal, high-dimensional), the convergence accuracy and stability of SSA algorithm decrease. In order to overcome the drawbacks, salp swarm algorithm with crossover scheme and Lévy flight (SSACL) is proposed. The crossover scheme and Lévy flight strategy are used to improve the movement patterns of salp leader and followers, respectively. Experiments have been conducted on various test functions, including unimodal, multimodal, and composite functions. The experimental results indicate that the proposed SSACL algorithm outperforms other advanced algorithms in terms of precision, stability, and efficiency. Furthermore, the Wilcoxon’s rank sum test illustrates the advantages of proposed method in a statistical and meaningful way.


Nanophotonics ◽  
2020 ◽  
Vol 9 (13) ◽  
pp. 4127-4138 ◽  
Author(s):  
Kirill P. Kalinin ◽  
Alberto Amo ◽  
Jacqueline Bloch ◽  
Natalia G. Berloff

AbstractGain-dissipative systems of various physical origin have recently shown the ability to act as analogue minimisers of hard combinatorial optimisation problems. Whether or not these proposals will lead to any advantage in performance over the classical computations depends on the ability to establish controllable couplings for sufficiently dense short- and long-range interactions between the spins. Here, we propose a polaritonic XY-Ising machine based on a network of geometrically isolated polariton condensates capable of minimising discrete and continuous spin Hamiltonians. We elucidate the performance of the proposed computing platform for two types of couplings: relative and absolute. The interactions between the network nodes might be controlled by redirecting the emission between the condensates or by sending the phase information between nodes using resonant excitation. We discuss the conditions under which the proposed machine leads to a pure polariton simulator with pre-programmed couplings or results in a hybrid classical polariton simulator. We argue that the proposed architecture for the remote coupling control offers an improvement over geometrically coupled condensates in both accuracy and stability as well as increases versatility, range, and connectivity of spin Hamiltonians that can be simulated with polariton networks.


Author(s):  
Antoni Świć ◽  
Arkadiusz Gola ◽  
Łukasz Sobaszek ◽  
Natalia Šmidová

AbstractThe article presents a new thermo-mechanical machining method for the manufacture of long low-rigidity shafts which combines straightening and heat treatment operations. A fixture for thermo-mechanical treatment of long low-rigidity shafts was designed and used in tests which involved axial straightening of shafts combined with a quenching operation (performed to increase the corrosion resistance of the steel used as stock material). The study showed that an analysis of the initial deflections of semi-finished shafts of different dimensions and determination of the maximum corrective deflection in the device could be used as a basis for performing axial straightening of shaft workpieces with simultaneous heat treatment and correction of the initial deflection of the workpiece. The deflection is corrected by stretching the fibers of the stock material, at any cross-section of the shaft, up to the yield point and generating residual stresses symmetrical to the axis of the workpiece. These processes allow to increase the accuracy and stability of the geometric shape of the shaft.


1982 ◽  
Vol 104 (2) ◽  
pp. 143-149 ◽  
Author(s):  
W. F. Z. Lee ◽  
D. C. Blakeslee ◽  
R. V. White

A new metering concept of a self-correcting and self-checking turbine meter is described in which a sensor rotor downstream from the main rotor senses and responds to changes in the exit angle of the fluid leaving the main rotor. The output from the sensor rotor is then electronically combined with the output from the main rotor to produce an adjusted output which automatically and continuously corrects to original meter calibration accuracy. This takes place despite changes in retarding torques, bearing wear and/or upstream conditions occurring in field operations over those which were experienced during calibration. The ratio of the sensor rotor output to the main rotor output at operating conditions is also automatically and continuously compared with that at calibration conditions. This provides an indication of the amount of accuracy deviation from initial calibration that is being corrected by the sensor rotor. This concept is studied theoretically and experimentally. Both the theory and test results (laboratory and field) confirm the concept’s validity and practicability.


2012 ◽  
Vol 18 (S2) ◽  
pp. 28-29 ◽  
Author(s):  
R. Wuhrer ◽  
K. Mason

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


Author(s):  
Yisong He ◽  
Shengyuan Zhang ◽  
Yong Luo ◽  
Hang Yu ◽  
Yuchuan Fu ◽  
...  

Background: Manual segment target volumes were time-consuming and inter-observer variability couldn’t be avoided. With the development of computer science, auto-segmentation had the potential to solve this problem. Objective: To evaluate the accuracy and stability of Atlas-based and deep-learning-based auto-segmentation of the intermediate risk clinical target volume, composed of CTV2 and CTVnd, for nasopharyngeal carcinoma quantitatively. Methods and Materials: A cascade-deep-residual neural network was constructed to automatically segment CTV2 and CTVnd by deep learning method. Meanwhile, a commercially available software was used to automatically segment the same regions by Atlas-based method. The datasets included contrast computed tomography scans from 102 patients. For each patient, the two regions were manually delineated by one experienced physician. The similarity between the two auto-segmentation methods was quantitatively evaluated by Dice similarity coefficient, the 95th Hausdorff distance, volume overlap error and relative volume difference, respectively. Statistical analyses were performed using the ranked Wilcoxon test. Results: The average Dice similarity coefficient (±standard deviation) given by the deep-learning-based and Atlas-based auto-segmentation were 0.84(±0.03) and 0.74(±0.04) for CTV2, 0.79(±0.02) and 0.68(±0.03) for CTVnd, respectively. For the 95th Hausdorff distance, the corresponding values were 6.30±3.55mm and 9.34±3.39mm for CTV2, 7.09±2.27mm and 14.33±3.98mm for CTVnd. Besides, volume overlap error and relative volume difference could also predict the same situations. Statistical analyses showed significant difference between the two auto-segmentation methods (p<0.01). Conclusions: Compared with the Atlas-based segmentation approach, the deep-learning-based segmentation method performed better both in accuracy and stability for meaningful anatomical areas other than organs at risk.


Sign in / Sign up

Export Citation Format

Share Document