scholarly journals Scaling Support Vector Machines Towards Exascale Computing for Classification of Large-Scale High-Resolution Remote Sensing Images

Author(s):  
Ernir Erlingsson ◽  
Gabriele Cavallaro ◽  
Morris Riedel ◽  
Helmut Neukirchen
2013 ◽  
Vol 333-335 ◽  
pp. 1080-1084
Author(s):  
Zhang Fei ◽  
Ye Xi

In this paper, we will propose a novel classification method of high-resolution SAR using local autocorrelation and Support Vector Machines (SVM) classifier. The commonly applied spatial autocorrelation indexes, called Moran's Index; Geary's Index, Getis's Index, will be used to depict the feature of the land-cover. Then, the SVM based on these indexes will be applied as the high-resolution SAR classifier. A Cosmo-SkyMed scene in ChengDu city, China is used for our experiment. It is shown that the method proposed can lead to good classification accuracy.


2020 ◽  
Vol 12 (22) ◽  
pp. 3708 ◽  
Author(s):  
Ziyi Feng ◽  
Guanhua Huang ◽  
Daocai Chi

Many approaches have been developed to analyze remote sensing images. However, for the classification of large-scale problems, most algorithms showed low computational efficiency and low accuracy. In this paper, the newly developed semi-supervised extreme learning machine (SS-ELM) framework with k-means clustering algorithm for image segmentation and co-training algorithm to enlarge the sample sets was used to classify the agricultural planting structure at large-scale areas. Data sets collected from a small-scale area within the Hetao Irrigation District (HID) at the upper reaches of the Yellow River basin were used to evaluate the SS-ELM framework. The results of the SS-ELM algorithm were compared with those of the random forest (RF), ELM, support vector machine (SVM) and semi-supervised support vector machine (S-SVM) algorithms. Then the SS-ELM algorithm was applied to analyze the complex planting structure of HID in 1986–2010 by comparing the remote sensing estimated results with the statistical data. In the small-scale case, the SS-ELM algorithm performed better than the RF, ELM, SVM, and S-SVM algorithms. For the SS-ELM algorithm, the average overall accuracy (OA) was in a range of 83.00–92.17%. On the contrary, for the other four algorithms, their average OA values ranged from 56.97% to 92.84%. Whereas, in the classification of planting structure in HID, the SS-ELM algorithm had an excellent performance in classification accuracy and computational efficiency for three major planting crops including maize, wheat, and sunflowers. The estimated areas by using the SS-ELM algorithm based on the remote sensing images were consistent with the statistical data, and their difference was within a range of 3–25%. This implied that the SS-ELM framework could be served as an effective method for the classification of complex planting structures with relatively fast training, good generalization, universal approximation capability, and reasonable learning accuracy.


2020 ◽  
Vol 12 (21) ◽  
pp. 3501
Author(s):  
Qingsong Xu ◽  
Xin Yuan ◽  
Chaojun Ouyang ◽  
Yue Zeng

Unlike conventional natural (RGB) images, the inherent large scale and complex structures of remote sensing images pose major challenges such as spatial object distribution diversity and spectral information extraction when existing models are directly applied for image classification. In this study, we develop an attention-based pyramid network for segmentation and classification of remote sensing datasets. Attention mechanisms are used to develop the following modules: (i) a novel and robust attention-based multi-scale fusion method effectively fuses useful spatial or spectral information at different and same scales; (ii) a region pyramid attention mechanism using region-based attention addresses the target geometric size diversity in large-scale remote sensing images; and (iii) cross-scale attention in our adaptive atrous spatial pyramid pooling network adapts to varied contents in a feature-embedded space. Different forms of feature fusion pyramid frameworks are established by combining these attention-based modules. First, a novel segmentation framework, called the heavy-weight spatial feature fusion pyramid network (FFPNet), is proposed to address the spatial problem of high-resolution remote sensing images. Second, an end-to-end spatial-spectral FFPNet is presented for classifying hyperspectral images. Experiments conducted on ISPRS Vaihingen and ISPRS Potsdam high-resolution datasets demonstrate the competitive segmentation accuracy achieved by the proposed heavy-weight spatial FFPNet. Furthermore, experiments on the Indian Pines and the University of Pavia hyperspectral datasets indicate that the proposed spatial-spectral FFPNet outperforms the current state-of-the-art methods in hyperspectral image classification.


Sign in / Sign up

Export Citation Format

Share Document