Research on the Directional Dependence of the Sampling Scale of Canopy Clumping Index

Author(s):  
Yidong Tong ◽  
Ziti Jiao ◽  
Lei Cui ◽  
Siyang Yin ◽  
Xiaoning Zhang ◽  
...  
2013 ◽  
Vol 773 (1) ◽  
pp. L3 ◽  
Author(s):  
M. Axelsson ◽  
Y. Fantaye ◽  
F. K. Hansen ◽  
A. J. Banday ◽  
H. K. Eriksen ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 948
Author(s):  
Lei Cui ◽  
Ziti Jiao ◽  
Kaiguang Zhao ◽  
Mei Sun ◽  
Yadong Dong ◽  
...  

Clumping index (CI) is a canopy structural variable important for modeling the terrestrial biosphere, but its retrieval from remote sensing data remains one of the least reliable. The majority of regional or global CI products available so far were generated from multiangle optical reflectance data. However, these reflectance-based estimates have well-known limitations, such as the mere use of a linear relationship between the normalized difference hotspot and darkspot (NDHD) and CI, uncertainties in bidirectional reflectance distribution function (BRDF) models used to calculate the NDHD, and coarse spatial resolutions (e.g., hundreds of meters to several kilometers). To remedy these limitations and develop alternative methods for large-scale CI mapping, here we explored the use of spaceborne lidar—the Geoscience Laser Altimeter System (GLAS)—and proposed a semi-physical algorithm to estimate CI at the footprint level. Our algorithm was formulated to leverage the full vertical canopy profile information of the GLAS full-waveform data; it converted raw waveforms to forest canopy gap distributions and gap fractions of random canopies, which was used to estimate CI based on the radiative transfer theory and a revised Beer–Lambert model. We tested our algorithm over two areas in China—the Saihanba National Forest Park and Heilongjiang Province—and assessed its relative accuracies against field-measured CI and MODIS CI products. We found that reliable estimation of CI was possible only for GLAS waveforms with high signal-to-noise ratios (e.g., >65) and at gentle slopes (e.g., <12°). Our GLAS-based CI estimates for high-quality waveforms compared well to field-based CI (i.e., R2 = 0.72, RMSE = 0.07, and bias = 0.02), but they showed less correlation to MODIS CI (e.g., R2 = 0.26, RMSE = 0.12, and bias = 0.04). The difference highlights the impact of the scale effect in conducting comparisons of products with huge differences resolution. Overall, our analyses represent the first attempt to use spaceborne lidar to retrieve high-resolution forest CI and our algorithm holds promise for mapping CI globally.


2019 ◽  
Vol 66 (1) ◽  
pp. 148-154
Author(s):  
Matthew J. Gadlage ◽  
David I. Bruce ◽  
James D. Ingalls ◽  
Dobrin P. Bossev ◽  
Matthew Mckinney ◽  
...  

1995 ◽  
Vol 349 (3) ◽  
pp. 386-392 ◽  
Author(s):  
H. Bøggild ◽  
J. Boissevain ◽  
M. Cherney ◽  
J. Dodd ◽  
S. Esumi ◽  
...  

2020 ◽  
Author(s):  
Sophia Gruber ◽  
Achim Löf ◽  
Steffen M. Sedlak ◽  
Martin Benoit ◽  
Hermann E. Gaub ◽  
...  

AbstractThe small molecule biotin and the homotetrameric protein streptavidin (SA) form a stable and robust complex that plays a pivotal role in many biotechnological and medical applications. In particular, the biotin-streptavidin linkage is frequently used in single molecule force spectroscopy (SMFS) experiments. Recent data suggest that biotin-streptavidin bonds show strong directional dependence and a broad range of multi-exponential lifetimes under load. Here, we investigate engineered SA variants with different valencies and a unique tethering point under constant forces using a magnetic tweezer assay. We observed two orders-of-magnitude differences in the lifetimes, which we attribute to the distinct force loading geometries in the different SA variants. We identified an especially long-lived tethering geometry that will facilitate ultra-stable SMFS experiments and pave the way for new biotechnological applications.


2021 ◽  
Author(s):  
Puneet Singh ◽  
Oishee Ghosal ◽  
Aditya Murthy ◽  
Ashitava Ghodal

A human arm, up to the wrist, is often modelled as a redundant 7 degree-of-freedom serial robot. Despite its inherent nonlinearity, we can perform point-to-point reaching tasks reasonably fast and with reasonable accuracy in the presence of external disturbances and noise. In this work, we take a closer look at the task space error during point-to-point reaching tasks and learning during an external force-field perturbation. From experiments and quantitative data, we confirm a directional dependence of the peak task space error with certain directions showing larger errors than others at the start of a force-field perturbation, and the larger errors are reduced with repeated trials implying learning. The analysis of the experimental data further shows that a) the distribution of the peak error is made more uniform across directions with trials and the error magnitude and distribution approaches the value when no perturbation is applied, b) the redundancy present in the human arm is used more in the direction of the larger error, and c) homogenization of the error distribution is not seen when the reaching task is performed with the non-dominant hand. The results support the hypothesis that not only magnitude of task space error, but the directional dependence is reduced during motor learning and the workspace is homogenized possibly to increase the control efficiency and accuracy in point-to-point reaching tasks. The results also imply that redundancy in the arm is used to homogenize the workspace, and additionally since the bio-mechanically similar dominant and non-dominant arms show different behaviours, the homogenizing is actively done in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document