Verification of the Topographically Accurate Reflection Point Prediction Algorithm for Operational GNSS-Reflectometry Using TDS-1 and DOT-1

Author(s):  
Lucinda King ◽  
Martin Unwin ◽  
Jonathan Rawlinson ◽  
Raffaella Guida ◽  
Craig Underwood
2021 ◽  
Vol 13 (5) ◽  
pp. 1031
Author(s):  
Lucinda King ◽  
Martin Unwin ◽  
Jonathan Rawlinson ◽  
Raffaella Guida ◽  
Craig Underwood

GNSS Reflectometry (GNSS-R), a method of remote sensing using the reflections from satellite navigation systems, was initially envisaged for ocean wind speed sensing. In recent times there has been significant interest in the use of GNSS-R for sensing land parameters such as soil moisture, which has been identified as an Essential Climate Variable (ECV). Monitoring objectives for ECVs set by the Global Climate Observing System (GCOS) organisation include a reduction in data gaps from spaceborne sources. GNSS-R can be implemented on small, relatively cheap platforms and can enable the launch of constellations, thus reducing such data gaps in these important datasets. However in order to realise operational land sensing with GNSS-R, adaptations are required to existing instrumentation. Spaceborne GNSS-R requires the reflection points to be predicted in advance, and for land sensing this means the effect of topography must be considered. This paper presents an algorithm for on-board prediction of reflection points over the land, allowing generation of DDMs on-board as well as compression and calibration. The algorithm is tested using real satellite data from TechDemoSat-1 in a software receiver with on-board constraints being considered. Three different resolutions of Digital Elevation Model are compared. The algorithm is shown to perform better against the operational requirements of sensing land parameters than existing methods and is ready to proceed to flight testing.


2019 ◽  
Vol 11 (19) ◽  
pp. 2327 ◽  
Author(s):  
Changjiang Hu ◽  
Craig Benson ◽  
Hyuk Park ◽  
Adriano Camps ◽  
Li Qiao ◽  
...  

Global Navigation Satellite System (GNSS) reflected signals can be used to remotely sense the Earth’s surface, known as GNSS reflectometry (GNSS-R). The GNSS-R technique has been applied to numerous areas, such as the retrieval of wind speed, and the detection of Earth surface objects. This work proposes a new application of GNSS-R, namely to detect objects above the Earth’s surface, such as low Earth orbit (LEO) satellites. To discuss its feasibility, 14 delay Doppler maps (DDMs) are first presented which contain unusually bright reflected signals as delays shorter than the specular reflection point over the Earth’s surface. Then, seven possible causes of these anomalies are analysed, reaching the conclusion that the anomalies are likely due to the signals being reflected from objects above the Earth’s surface. Next, the positions of the objects are calculated using the delay and Doppler information, and an appropriate geometry assumption. After that, suspect satellite objects are searched in the satellite database from Union of Concerned Scientists (UCS). Finally, three objects have been found to match the delay and Doppler conditions. In the absence of other reasons for these anomalies, GNSS-R could potentially be used to detect some objects above the Earth’s surface.


2021 ◽  
Author(s):  
Vitor Hugo Almeida Junior ◽  
Marcelo Tomio Matsuoka ◽  
Felipe Geremia-Nievinski

<p>Global mean sea level is rising at an increasing rate. It is expected to cause more frequent extreme events on coastal sites. The main sea level monitoring systems are conventional tide gauges and satellite altimeters. However, tide gauges are few and satellite altimeters do not work well near the coasts. Ground-based GNSS Reflectometry (GNSS-R) is a promising alternative for coastal sea level measurements. GNSS-R works as a bistatic radar, based on the use of radio waves continuously emitted by GNSS satellites, such as GPS and Galileo, that are reflected on the Earth’s surface. The delay between reflected and direct signals, known as interferometric delay, can be used to retrieve geophysical parameters, such as sea level. One advantage of ground-based GNSS-R is the slant sensing direction, which implies the reflection points can occur at long distances from the receiving antenna. The higher is the receiving antenna and the lower is the satellite elevation angle, the longer will be the distance to the reflection point. The geometrical modeling of interferometric delay, in general, adopts a planar and horizontal model to represent the reflector surface. This assumption may be not valid for far away reflection points due to Earth’s curvature. It must be emphasized that ground-based GNSS-R sensors can be located at high altitudes, such in lighthouses and cliffs, and GNSS satellites are often tracked near grazing incidence and even at negative elevation angles. Eventually, Earth’s curvature would have a significant impact on altimetry retrievals. The osculating spherical model is more adequate to represent the Earth’s surface since its mathematical complexity is in between a plane and an ellipsoid. The present work aims to quantify the effect of Earth’s curvature on ground-based GNSS-R altimetry. Firstly, we modeled the interferometric delay for each plane and sphere and we calculated the differences across the two surface models, for varying satellite elevation and antenna altitude. Then, we developed an altimetry correction in terms of half of the rate of change of the delay correction with respect to the sine of elevation. We simulated observation scenarios with satellite elevation angles from zenith down to the minimum observable elevation on the spherical horizon (negative) and antenna altitudes from 10 m to 500 m. We noted that due to Earth’s curvature, the reflection point is displaced, brought closer in the x-axis and bent downward in the y-axis. The displacement of the reflection point increases the interferometric delay. Near the planar horizon, at zero elevation, the difference increases quickly and so does the altimetry correction. Finally, considering a 1-cm altimetry precision threshold to sea-level measurements, we observed that the altimetry correction for Earth’s curvature is needed at 10°, 20°, and 30° satellite elevation, for an antenna altitude of 60 m, 120 m, and 160 m, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document