Spatial-Temporal Distribution of Air Quality and the Influencing Factors in Complex Mountainous Cities

Author(s):  
Mengyao Li ◽  
Hongxia Luo ◽  
Rui Zhang
2015 ◽  
Vol 20 (3) ◽  
pp. 260-267 ◽  
Author(s):  
Hong Zhou ◽  
Youping Li ◽  
Huifang Liu ◽  
Zhongyu Fan ◽  
Jie Xia ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Bulgansaikhan Baldorj ◽  
Munkherdene Tsagaan ◽  
Lodoysamba Sereeter ◽  
Amanjol Bulkhbai

Air pollution is one of the most pressing modern-day issues in cities around the world. However, most cities have adopted air quality measurement devices that only measure the past pollution levels without paying attention to the influencing factors. To obtain preliminary pollution information with regard to environmental factors, we developed a variational autoencoder and feedforward neural network-based embedded generative model to examine the relationship between air quality and the effects of environmental factors. In the model, actual SO2, NO2, PM2.5, PM10, and CO measurements from 2016 to 2020 were used, which were assembled from 15 differently located ground monitoring stations in Ulaanbaatar city. A wide range of weather and fuel measurements were used as the data for the influencing factors, and were collected over the same period as the air pollution data were recorded. The prediction results concerned all measurement stations, and the results were visualized as a spatial–temporal distribution of pollution and the performance of individual stations. A cross-validated R2 was used to estimate the entire pollution distribution through the regions as SO2: 0.81, PM2.5: 0.76, PM10: 0.89, and CO: 0.83. Pearson’s chi-squared tests were used for assessing each measurement station, and the contingency tables represent a high correlation between the actual and model results. The model can be applied to perform specific analysis of the interdependencies between pollution and environmental factors, and the performance of the model improves with long-range data.


2021 ◽  
pp. 127129
Author(s):  
Haoyu Jin ◽  
Xiaohong Chen ◽  
Yuming Wang ◽  
Ruida Zhong ◽  
Tongtiegang Zhao ◽  
...  

2013 ◽  
Vol 6 (4) ◽  
pp. 883-899 ◽  
Author(s):  
K. W. Appel ◽  
G. A. Pouliot ◽  
H. Simon ◽  
G. Sarwar ◽  
H. O. T. Pye ◽  
...  

Abstract. The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transformation, transport, and fate of the many different air pollutant species that comprise particulate matter (PM), including dust (or soil). The CMAQ model version 5.0 (CMAQv5.0) has several enhancements over the previous version of the model for estimating the emission and transport of dust, including the ability to track the specific elemental constituents of dust and have the model-derived concentrations of those elements participate in chemistry. The latest version of the model also includes a parameterization to estimate emissions of dust due to wind action. The CMAQv5.0 modeling system was used to simulate the entire year 2006 for the continental United States, and the model estimates were evaluated against daily surface-based measurements from several air quality networks. The CMAQ modeling system overall did well replicating the observed soil concentrations in the western United States (mean bias generally around ±0.5 μg m−3); however, the model consistently overestimated the observed soil concentrations in the eastern United States (mean bias generally between 0.5–1.5 μg m−3), regardless of season. The performance of the individual trace metals was highly dependent on the network, species, and season, with relatively small biases for Fe, Al, Si, and Ti throughout the year at the Interagency Monitoring of Protected Visual Environments (IMPROVE) sites, while Ca, K, and Mn were overestimated and Mg underestimated. For the urban Chemical Speciation Network (CSN) sites, Fe, Mg, and Mn, while overestimated, had comparatively better performance throughout the year than the other trace metals, which were consistently overestimated, including very large overestimations of Al (380%), Ti (370%) and Si (470%) in the fall. An underestimation of nighttime mixing in the urban areas appears to contribute to the overestimation of trace metals. Removing the anthropogenic fugitive dust (AFD) emissions and the effects of wind-blown dust (WBD) lowered the model soil concentrations. However, even with both AFD emissions and WBD effects removed, soil concentrations were still often overestimated, suggesting that there are other sources of errors in the modeling system that contribute to the overestimation of soil components. Efforts are underway to improve both the nighttime mixing in urban areas and the spatial and temporal distribution of dust-related emission sources in the emissions inventory.


2018 ◽  
Vol 10 (5) ◽  
pp. 1613 ◽  
Author(s):  
Rong Liu ◽  
Xiaojun Liu ◽  
Bingbing Pan ◽  
Hui Zhu ◽  
Zhaokang Yuan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing Liu ◽  
Yueqiang Jin ◽  
Dezhi Xu ◽  
Yishu Wang ◽  
Chaoyang Li

AbstractStudies have shown that there is a certain correlation between air pollution and various human diseases, especially lung diseases, so it is very meaningful to monitor the concentration of pollutants in the air. Compared with the national air quality monitoring station (national control point), the micro air quality detector has the advantage that it can monitor the concentration of pollutants in real time and grid, but its measurement accuracy needs to be improved. This paper proposes a model combining the least absolute selection and shrinkage operator (LASSO) regression and nonlinear autoregressive models with exogenous inputs (NARX) to calibrate the data measured by the micro air quality detector. Before establishing the LASSO-NARX model, correlation analysis is used to test whether the correlation between the concentration of air pollutants and its influencing factors is significant, and to find out the main factors that affect the concentration of pollutants. Due to the multicollinearity between various influencing factors, LASSO regression is used to further screen the influencing factors and give the quantitative relationship between the pollutant concentration and various influencing factors. In order to improve the prediction accuracy of pollutant concentration, the predicted value of each pollutant concentration in the LASSO regression model and the measurement data of the micro air quality detector are used as input variables, and the LASSO-NARX model is constructed using the NARX neural network. Several indicators such as goodness of fit, root mean square error, mean absolute error and relative mean absolute percent error are used to compare various air quality models. The results show that the prediction results of the LASSO-NARX model are not only better than the LASSO model alone and the NARX model alone, but also better than the commonly used multilayer perceptron and radial basis function neural network. Using this model to calibrate the measurement data of the micro air quality detector can increase the accuracy by 61.3–91.7%.


Sign in / Sign up

Export Citation Format

Share Document