An enhanced parallel planar lattice architecture for large scale neural network simulations

Author(s):  
Y. Fujimoto
2021 ◽  
Author(s):  
Raymond Pavloski

<p>Demonstrating that an understanding of how neural networks produce a specific quality of experience has been achieved would provide a foundation for new research programs and neurotechnologies. The phenomena that comprise cortical prosthetic vision have two desirable properties for the pursuit of this goal: 1) Models of the subjective qualities of cortical prosthetic vision can be constructed; and 2) These models can be related in a natural way to models of the objective aspects of cortical prosthetic vision. Sense element engagement theory portrays the qualities of cortical prosthetic vision together with coordinated objective neural phenomena as constituting sensible spatiotemporal patterns that are produced by neural interactions. Small-scale neural network simulations are used to illustrate how these patterns are thought to arise. It is proposed that simulations and an electronic neural network (ENN) should be employed in devising tests of the theory. Large-scale simulations can provide estimates of parameter values that are required to construct an ENN. The ENN will be used to develop a prosthetic device that is predicted by the theory to produce visual forms in a novel fashion. According to the theory, confirmation of this prediction would also provide evidence that this ENN is a sentient device.</p>


1990 ◽  
Vol 01 (02n03) ◽  
pp. 259-277 ◽  
Author(s):  
G. A. KOHRING

The current state of large scale, numerical simulations of neural networks is reviewed. Hardware and software improvements make it likely that biological size networks, i.e., networks with more than 1010 couplings, can be simulated in the near future. Sample programs for the efficient simulation of a few simple models are presented as an aid to researchers just entering the field.


2021 ◽  
Author(s):  
Raymond Pavloski

<p>Demonstrating that an understanding of how neural networks produce a specific quality of experience has been achieved would provide a foundation for new research programs and neurotechnologies. The phenomena that comprise cortical prosthetic vision have two desirable properties for the pursuit of this goal: 1) Models of the subjective qualities of cortical prosthetic vision can be constructed; and 2) These models can be related in a natural way to models of the objective aspects of cortical prosthetic vision. Sense element engagement theory portrays the qualities of cortical prosthetic vision together with coordinated objective neural phenomena as constituting sensible spatiotemporal patterns that are produced by neural interactions. Small-scale neural network simulations are used to illustrate how these patterns are thought to arise. It is proposed that simulations and an electronic neural network (ENN) should be employed in devising tests of the theory. Large-scale simulations can provide estimates of parameter values that are required to construct an ENN. The ENN will be used to develop a prosthetic device that is predicted by the theory to produce visual forms in a novel fashion. According to the theory, confirmation of this prediction would also provide evidence that this ENN is a sentient device.</p>


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document